K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
25 tháng 7 2023
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $(p,3)=1$. Khi đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ tự nhiên.
Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=6k+3\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái với giả thiết - loại)
Do đó $p=3k+2$.
Khi đó: $4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số (đpcm)
J
0
ST
0
LT
1
PG
7 tháng 2 2020
\(P=2\Rightarrow8P^2+1=33\left(LHS\right)\)
\(P=3\Rightarrow8P^2+1=73;3P^2+5=32\left(LHS\right)\)
P là số nguyên tố lớn hơn 3 có dạng \(3k+1;3k+2\left(k\inℕ^∗\right)\)
Đến đây làm nốt