Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ODAE có
góc ODA+góc OEA=180 độ
=>ODAE là tứ giác nội tiếp
b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)
\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)
c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có
góc IDK chung
=>ΔDIK đồng dạng vơi ΔDHE
=>DI/DH=DK/DE
=>DH*DK=DI*DE=2*IE^2
a: Xét (O) có
ΔAMB nội tiếp đường tròn
AB là đường kính
Do đó: ΔAMB vuông tại M
a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>CE\(\perp\)AB tại E
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>BD\(\perp\)AC tại D
Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại I
b: Ta có: \(\widehat{AMO}=\widehat{ANO}=\widehat{AIO}\)
=>A,M,I,O,N cùng thuộc đường tròn đường kính AO
Gọi I là trung điểm của AO
=>A,M,I,O,N cùng thuộc (I)
Xét (O) có
AM,AN là các tiếp tuyến
Do đó: OA là phân giác của góc MON
=>\(\widehat{MOA}=\widehat{NOA}\)
Xét (I) có
\(\widehat{MOA}\) là góc nội tiếp chắn cung MA
\(\widehat{NOA}\) là góc nội tiếp chắn cung NA
\(\widehat{MOA}=\widehat{NOA}\)
Do đó: \(sđ\stackrel\frown{MA}=sđ\stackrel\frown{NA}\)
Xét (I) có
\(\widehat{MIA}\) là góc nội tiếp chắn cung MA
\(\widehat{NIA}\) là góc nội tiếp chắn cung NA
\(sđ\stackrel\frown{MA}=sđ\stackrel\frown{NA}\left(cmt\right)\)
Do đó: \(\widehat{MIA}=\widehat{NIA}\)
=>IA là phân giác của góc MIN
a: EF là tiếp tuyến của (I)
=>OM vuông góc EF
mà AI là bán kính của (O)
nên góc FAE=90 độ
=>AG là đường cao
=>G,H,O thẳng hàng
=>GH//EF
b: Xét ΔEAF có góc EAM=góc FAM
=>AM là phân giác của góc EAF
c: AM cắt (I)=K
=>IK=AI
HM//AE
KE vuông góc AE
=>MH vuông góc EK tại Q