K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

A B O M C D E F H G

1) Vì ^AEB chắn nửa đường tròn (O) nên EA vuông góc EB. Do đó BE // CM.

Suy ra tứ giác BECM là hình thang cân (Vì 4 điểm B,C,M,E cùng thuộc (O))

Kết hợp với M là điểm chính giữa cung AB suy ra CE = BM = AM hay (CE = (AM

Vậy thì tứ giác ACEM là hình thang cân (đpcm).

2) Đường tròn (O) có M là điểm chính giữa cung AB, suy ra MO vuông góc AB

Từ đó MO // CH suy ra ^HCM = ^OMC = ^OCM. Vậy CM là phân giác của ^HCO (đpcm).

3) Kẻ đường kính MG của đường tròn (O). Dễ thấy ^DOG = ^DCG (= 900)

Suy ra 4 điểm C,D,O,G cùng thuộc đường tròn đường kính DG

Mặt khác AB là trung trực của MG, D thuộc AB nên DG = DM

Theo mối quan hệ giữa đường kính và dây ta có: 

\(CD\le DG=DM\Leftrightarrow2CD\le DM+CD=CM\Leftrightarrow CD\le\frac{1}{2}CM\)

Lại có tứ giác ACEM là hình thang cân, do vậy \(CD\le\frac{1}{2}CM=\frac{1}{2}AE\)(đpcm).

Dấu "=" xảy ra khi và chỉ khi C là điểm chính giữa cung AB không chứa M của (O).

21 tháng 1 2016

ACEM là hình thang cân => AE = CM

CD nhỏ hơn hoặc = 1/2 AE

dấu =  <=> C đx với M wa O

21 tháng 1 2016

chưa, câu a nghĩ mãi chẳng làm dc

23 tháng 5 2021

a. xét (O):

sđ : \(\widehat{AB}=180\) (cung chắn nửa đường tròn)

sđ \(\widehat{AC}=sđ\widehat{BC}=\dfrac{1}{2}sđ\widehat{AB}\)

\(sđ\widehat{AC}=sđ\widehat{BC}=90\)

mà \(\widehat{AC}=\widehat{AOC}\)⇒ \(\widehat{AOC}=90\)

\(\widehat{AIC}=90\) ⇒ \(\widehat{AOC}=\widehat{AIC}\)

⇒ tứ giác ACIO nội tiếp

\(\Delta AOC\) vuông tại (O)     (\(\widehat{AOC}=90\))

OA=OC=R    (A;C ϵ (O;R))

⇒ΔAOC vuông cân

\(\widehat{CAO}=45\)   (t/c tam giác vuông cân)

mà \(\widehat{CAO}+\widehat{CIO}=180\)

\(\widehat{CIO}=180-45=135\)

\(\widehat{CIO}+\widehat{OID}=180\)      (t/c kề bù)

\(\widehat{OID}=180-135=45\)

 

 

23 tháng 5 2021

b.ACIO nội tiếp    (cmt)

\(\Rightarrow\widehat{A_1}=\widehat{O_1}\)   ( 2 góc nội tiếp chắn \(\widehat{CI}\))

xét (O):

\(\widehat{A_1}=\dfrac{1}{2}\widehat{COM}\)     (t/c đường tròn)

mà \(\widehat{A_1}=\widehat{O_1}\)

\(\widehat{O_1}=\dfrac{1}{2}\widehat{COM}\)     

OI nằm giữa OC và OM

⇒OI là tia phân giác của \(\widehat{COM}\)

25 tháng 4 2016

o A B M C D I

a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\)  nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.

b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà  \(CM \perp AB\)  nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).

\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)

Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)

Chúc em học tốt ^^