Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) góc MAN nội tiếp chắn nửa (O) => góc MAN = 900 hay góc CAD = 900
tam giác CAD vuông tại A có đường cao AB => AM.AC = AB2 = 4R2 không đổi
b) Tam giác OAN có OA = ON = R nên cân tại O => góc OAN = góc ONA hay góc BAD = góc MNA
mà góc BAD = góc ACD (cùng phụ góc BAC) => góc MNA = góc ACD => tứ giác CMND nội tiếp
c) tam giác ACD vuông tại A có AI là trung tuyến => IA = ID = 1/2 CD => tam giác IAD cân tại I => góc IAD = góc IDA
mà góc IDA = góc AMN( tứ giác CMND nội tiếp) => góc IAD = góc AMN mà góc AMD phụ góc MNA => góc IAD phụ góc MNA
=> góc AHN = 900 hay góc AHO = 900 , mà OA = R không đổi => H nằm trên đường tròn đường kính AO
a﴿ góc MAN nội tiếp chắn nửa ﴾O﴿ => góc MAN = 90o hay góc CAD = 90o
tam giác CAD vuông tại A có đường cao AB => AM.AC = AB 2 = 4R 2 không đổi
b﴿ Tam giác OAN có OA = ON = R nên cân tại O => góc OAN = góc ONA hay góc BAD = góc MNA
mà góc BAD = góc ACD ﴾cùng phụ góc BAC﴿ => góc MNA = góc ACD => tứ giác CMND nội tiếp
c﴿ tam giác ACD vuông tại A có AI là trung tuyến => IA = ID = 1/2 CD => tam giác IAD cân tại I => góc IAD = góc IDA
mà góc IDA = góc AMN﴾ tứ giác CMND nội tiếp﴿
=> góc IAD = góc AMN mà góc AMD phụ góc MNA => góc IAD phụ góc MNA
=> góc AHN = 90 0 hay góc AHO = 90 0 , mà OA = R không đổi => H nằm trên đường tròn đường kính AO
Ta có điểm C nằm trên đường tròn (AB) nên ^ACB = 900 => BC vuông góc AE
Xét \(\Delta\)BAE: ^ABE = 900, BC vuông góc AE (cmt) => AB2 = AC.AE (Hệ thức lượng trong tam giác vuông)
Tương tự AB2 = AD.AF. Do đó AC.AE = AD.AF. Từ đây, tứ giác ECDF nội tiếp.
Xét \(\Delta\)ABF: O là trung điểm AB; H là trung điểm BF => OH là đường trung bình trong \(\Delta\)ABF => OH // AF
Lại có CD là đường kính của (O), A thuộc (O) nên ^CAD = 900 => AE vuông góc AF
Do vậy OH vuông góc AE. Kết hợp với AO vuông góc HE (tại B) suy ra O là trực tâm \(\Delta\)AEH
=> EO vuông góc AH => ^AKE = ^ABE = 900 => A,K,B,E cùng thuộc đường tròn (AE)
Ta thấy AB,CD,KE tại O. Khi đó, áp dụng hệ thức lượng đường tròn: OE.OK = OA.OB = OC.OD
=> C,K,D,E cùng thuộc 1 đường tròn hay K thuộc đường tròn (DCE)
Mà tứ giác ECDF nội tiếp (cmt) nên K thuộc đường tròn ngoại tiếp tứ giác ECDF (đpcm).
Bài Toán trên có các câu hỏi a, b, c thứ tự để hướng dẫn làm bài
I)Chứng minh tứ giác ECDF nội tiếp
+) ACBD là hình chữ nhật ( tự chứng minh)
=> \(\widehat{ABC}=\widehat{ADC}\)
mà \(\widehat{ABC}=\widehat{AEB}\)( cùng phụ góc CBE)
=> \(\widehat{ADC}=\widehat{AEB}=\widehat{CEF}\)
=> Tứ giác ECDF nội tiếp
II) Chứng minh Tứ giác KDBO nội tiếp
Xét \(\Delta ABE\)và \(\Delta FBA\)
Hai tam giác trên đồng dạng ( tự chứng minh)
=> \(\frac{AB}{FB}=\frac{BE}{BA}\Leftrightarrow\frac{2.OB}{2.BH}=\frac{BE}{BA}\Leftrightarrow\frac{OB}{BH}=\frac{BE}{BA}\)(1)
Mặt khác \(\widehat{OBE}=\widehat{HBA}=90^o\)(2)
(1), (2) => \(\Delta OBE~\Delta HBA\)
=> \(\widehat{BEO}=\widehat{BAH}=\widehat{OAK}\)
=> Tứ giác BEAK nội tiếp
=> \(\widehat{AKO}=\widehat{OBE}=90^o\)
=> \(\widehat{OKH}=90^o\)(1)
Xét tam giác BDF vuông tại D , DH là đường trung tuyến
=> DH=HB
=> \(\widehat{HDB}=\widehat{HBD}=\widehat{BCD}=\widehat{ADC}\)
=> \(\widehat{ODH}=\widehat{ODB}+\widehat{HDB}=\widehat{ODB}+\widehat{ADO}=\widehat{ADB}=90^o\)(2)
Ta lại có: \(\widehat{OBH}=90^o\)(3)
Từ (1), (2), (3)
=> DKOBH cùng thuộc đường tròn đường kính OH
=> DKOB nội tiếp (4)
III) Chứng minh tứ giác DKCE nội tiếp
Từ (4) => \(\widehat{DKO}+\widehat{DBO}=180^o\)
Mặt khác : \(\widehat{DBO}=\widehat{DCA}\)và \(\widehat{DCA}+\widehat{DCE}=180^o\)
Từ 3 điều trên => \(\widehat{DKO}=\widehat{DCE}=\widehat{OCE}\)
=> Tứ giác DKCE nội tiếp
Từ (I) và (III)
=> D, K, C, E , F cùng thuộc một đường tròn
=> K thuộc đường tròn ngoại tiếp tứ giác ECDF