Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Có:\Delta AHO\Omega\Delta ABE\Rightarrow\frac{AH}{AB}=\frac{AO}{AE}\Rightarrow AH.AE=AB.OA\)
\(\Delta BHO\Omega\Delta BAD\left(gg\right)\Rightarrow\frac{BH}{BA}=\frac{BO}{BD}\Rightarrow BH.BD=AB.OB\)
Có : AH.AE + BH.BD = AB.OA + AB.OB = AB . (OA+OB) = AB.AB= AB2 = (2R)2 = 4R2 (đpcm)
Xét (O) có: AB là đường kính chắn nửa (O) (gt).
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ACB}=90^o.\\\widehat{ADB}=90^o.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC\perp AE.\\AD\perp BE.\end{matrix}\right.\)
Xét tam giác AEB có:
+ AD là đường cao tam giác AEB \(\left(AD\perp BE\right).\)
+ BC là đường cao tam giác AEB \(\left(BC\perp AE\right).\)
Mà AD cắt BC tại H (gt).
\(\Rightarrow\) H là trực tâm.
\(\Rightarrow\) EH là đường cao tam giác AEB.
\(\Rightarrow EH\perp AB\left(đpcm\right).\)
a: A,D,E,B cùng thuộc (O)
=>ADEB là tứ giác nội tiếp
=>\(\widehat{ADE}+\widehat{ABE}=180^0\)
mà \(\widehat{CDE}+\widehat{ADE}=180^0\)(hai góc kề bù)
nên \(\widehat{CDE}=\widehat{CBA}\)
b: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)CB tại E
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>BD\(\perp\)AC tại D
Xét ΔCAB có
AE,BD là các đường cao
AE cắt BD tại H
Do đó: H là trực tâm của ΔCAB
=>CH\(\perp\)AB
c: Xét (O) có \(\widehat{DHE}\) là góc có đỉnh ở bên trong đường tròn chắn hai cung DE và AB
=>\(\widehat{DHE}=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{DE}\right)\)
\(=\dfrac{1}{2}\left(180^0+60^0\right)=120^0\)
Xét tứ giác CDHE có \(\widehat{CDH}+\widehat{CEH}+\widehat{DCE}+\widehat{DHE}=360^0\)
=>\(\widehat{ACB}+120^0+90^0+90^0=360^0\)
=>\(\widehat{ACB}=60^0\)