K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Xem E là ảnh của A qua phép quay tâm B, góc 90 ο  . Khi A chạy trên nửa đường tròn (O), E sẽ chạy trên nửa đường tròn (O') là ảnh của nửa đường tròn (O) qua phép quay tâm tâm B, góc 90 ο  .

24 tháng 5 2017

Xem E là ảnh của A qua

Phép dời hình và phép đồng dạng trong mặt phẳng

26 tháng 8 2016

- Kẻ đường kính BB’

.Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định => AH = B'C

. Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H .

Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo v = B'C

- Cách xác định đường tròn (O’;R) .

Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : OO' = B'C

Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .

26 tháng 8 2016

Ôi, Tui chưa kịp chép Microsoft Office

27 tháng 8 2016

Bạn lấy thực hiện phép đối xứng qua \(BC\) thì \(O\) thành \(O'\) thì \(OB=O'B,OC=O'C\) mà \(OB=C=R\) cho nên \(O'B=O'C=R\left(1\right)\)
Ở đây \(R\) là bán kính đường tròn ngoại tiếp \(ABC'\)
, \(H\) thành \(H'\) với \(O\) là tâm đường tròn ngoại tiếp \(ABC\).
Cho nên \(\widehat{HBC}=\widehat{H'BC}\) ( phép đối xứng trực bảo toàn góc) mặt khác 
\(\widehat{HBC}=\widehat{HAC}\) cùng phụ với góc \(\widehat{C}\).
Điều này chứng tỏ \(ACH'B\) là tứ giác nội tiếp hay \(H'\) cũng thuộc \(\left(O\right)\)

Phép đối xứng là phép dời hình cho nên nó bảo toàn khoảng cách cũng có nghĩa 

\(O'H=OH'=R\) (vì \(H\) nằm trên \(\left(O\right)\)) (2)

Từ (1) và (2) ta được tam giác HBC luôn nội tiếp đường tròn \(\left(O'\right)\) bán kính R
do \(O,BC\) và R cố định nên \(O'\) cố định , ta được điều phải chứng minh.

28 tháng 8 2016

trục chứ sao lại "trực" ?

17 tháng 6 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi O là trung điểm của AB. Giả sử dựng được hình vuông MNPQ có M, N thuộc đường kính AB; P, Q thuộc nửa đường tròn. Khi đó O phải là trung điểm của MN. Nếu lấy một hình vuông M'N'P'Q' sao cho M', N' thuộc AB, O là trung điểm của M'N' thì dễ thấy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ đó suy ra hình vuông MNPQ là ảnh của hình vuông M'N'P'Q' qua phép vị tự tâm O, suy ra O, P, P' và O, Q, Q' thẳng hàng. Vậy ta có cách dựng:

- Dựng hình vuông M'N'P'Q' nằm trong nửa hình tròn đã cho sao cho M'N' thuộc AB và O là trung điểm của M'N'. Tia OP' cắt nửa đường tròn tại P; tia OQ' cắt nửa đường tròn tại Q.

Khi đó dễ thấy tứ giác MNPQ là hình vuông cần dựng

14 tháng 4 2016

- Kẻ đường kính BB’ .Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định \(\overrightarrow{\Rightarrow AH}=\overrightarrow{B'C}\)

Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H . Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo \(\overrightarrow{v}=\overrightarrow{B'C}\)

- Cách xác định đường tròn (O’;R) . Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : \(\overrightarrow{OO'}=\overrightarrow{B'C}\). Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .

20 tháng 8 2017

Giải bài 7 trang 35 sgk Hình học 11 | Để học tốt Toán 11

Vậy khi M di chuyển trên đường tròn (O; R) thì N di chuyển trên đường tròn (O’ ; R) là ảnh của (O ; R) qua phép tịnh tiến theo Giải bài 7 trang 35 sgk Hình học 11 | Để học tốt Toán 11

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng