Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé nguyen van vu :)
a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)
b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.
c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.
Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)
nên ID =MD, mà MD=DB nên ID=DB.
Gọi K là giao của MH và AD.
Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)
Tương tự giao điểm của BC với MH cũng là trung điểm MH.
Tóm lại N trùng K hay MN vuông góc AB.
a) vì \(AC\)VÀ \(CM\)LÀ 2 TIẾP TUYẾN CẮT NHAU TẠI \(C\)CỦA ĐƯỜNG TRÒN \(\left(O\right)\)NÊN TA CÓ
- \(CO\)LÀ TIA PHÂN GIÁC \(\widehat{ACM}\) ( TÍCH CHẤT
- \(OC\)LÀ TIA PHÂN GIÁC \(\widehat{AOM}\) 2 TIẾP TUYẾN
- \(AC=CM\) CẮT NHAU )
\(\Rightarrow\widehat{AOC}=\widehat{MOC}\)
C/M TƯƠNG TỰ TA CÓ \(\widehat{MOD}=\widehat{BOD}\)
+ TA CÓ: \(\widehat{AOC}+\widehat{MOC}+\widehat{MOD}+\widehat{BOD}=180^0\)
\(\Leftrightarrow2\widehat{COM}+2\widehat{MOD}=180^0\)
\(\Leftrightarrow2.\left(\widehat{COM}+\widehat{MOD}\right)=180^0\)
\(\Leftrightarrow\widehat{COM}+\widehat{MOD}=90^0\)
HAY \(\widehat{COD}=90^0\)
VẬY \(\widehat{COD}=90^0\)
B) XÉT \(\Delta AOM\)CÓ : \(AO=OM\)( BÁN KÍNH ĐƯỜNG TRÒN TÂM O )
\(\Rightarrow\Delta AOM\)LÀ \(\Delta\)CÂN TẠI O
MÀ \(\widehat{AOI}=\widehat{MOI}\)( TÍNH CHẤT 2 TIẾP TUYẾN CẮT NHAU )
\(\Rightarrow OI\)LÀ TIA PHÂN GIÁC ĐỒNG THỜI LÀ ĐƯỜNG CAO TRONG \(\Delta\) CÂN \(AOM\)
\(\Rightarrow OI\perp AM\)TẠI \(I\)
\(\Rightarrow\widehat{MIO}=90^0\)
C/M TƯƠNG TỰ TA CÓ: \(MK\perp OK\)
\(\Rightarrow\widehat{OKM}=90^0\)
THEO CÂU A) TA CÓ: \(\widehat{COD}=90^0\)
XÉT TỨ GIÁC \(OIMK\) CÓ 3 GÓC VUÔNG \(\Rightarrow\)TỨ GIÁC \(OIMK\)LÀ HÌNH CHỮ NHẬT
VẬY T/G \(OIMK\)LÀ HCN
C) TA CÓ: \(AC=CM\)( TÍNH CHẤT 2 TIẾP TUYẾN ....)
TƯƠNG TỰ \(MD=BD\)
KHI ĐÓ: \(AC.BD\)
\(=CM.MD\)
+ \(OM\perp CM\)( \(CM\)LÀ TIẾP TUYẾN TẠI M )
ÁP DỤNG HỆ THỨC GIỮA CẠNH VÀ ĐƯỜNG CAO VÀO \(\Delta COD\)VUÔGN TẠI \(O\), ĐƯỜNG CAO \(OM\)TA CÓ
\(CM.MD=MO^2\)
\(\Rightarrow CM.MD=R^2\) ( VÌ \(MO\)LÀ BÁN KÍNH)
HAY \(AC.BD=R^2\) MÀ \(R\)KHÔNG ĐỔI
\(\Rightarrow AC.BD\)KO ĐỔI KHI \(C\)DI CHUYỂN TRÊN \(Ax\)
D) VẼ \(I\)LÀ TRUNG ĐIỂM CỦA \(CD\), NỐI \(O\)VỚI \(I\)
\(AC\perp AB\) ( AC LÀ TIẾP TUYẾN TẠI A )
\(BD\perp AB\)( BD LÀ TIẾP TUYẾN TẠI B)
\(\Rightarrow AC\)SONG SONG \(BD\)( CÙNG VUÔNG GOC VỚI AB )
\(\Rightarrow\)T/G \(ACDB\)LÀ HÌNH THANG
XÉT HÌNH THANG \(ACDB\)
CÓ \(CI=DI\)
\(AO=OB\)
\(\Rightarrow OI\)SONG SONG \(AC\)
MÀ \(AC\perp AB\)
\(\Rightarrow OI\perp AB\) ( 1 )
+ \(MC=MD=\frac{1}{2}CD\)
XÉT \(\Delta\)VUÔNG \(COD\)CÓ \(OI\)LÀ ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN \(CD\)
VÀ \(OI=\frac{1}{2}CD\)
\(\Rightarrow OM=MC=MD\)
\(\Rightarrow M\)CÁCH ĐỀU 3 ĐIỂM \(O,C,D\)
\(\Rightarrow M\in\left(I;\frac{CD}{2}\right)\) ( 2 )
TỪ ( 1 ) VÀ ( 2 ) TA CÓ: \(AB\)LÀ TIẾP TUYẾN CỦA ĐƯỜNG TRÒN ĐƯỜNG KÍNH CD
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)
Ta có: MC+MD=CD
nên CD=CA+DB
b: Xét ΔCOD vuông tại O có OM là đường cao
nên \(CM\cdot DM=OM^2=R^2\)
hay \(AC\cdot BD=R^2\)
a: Xét (O) co
CM,CA là tiếp tuyên
=>CM=CA
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB
CD=CM+MD
=>CD=CA+BD
b: Xet ΔACN và ΔDBN có
góc NAC=góc NDB
góc ANC=góc DNB
=>ΔACN đồng dạng vơi ΔDBN
=>AC/BD=AN/DN
=>CN/MD=AN/ND
=>MN//AC//BD