Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CE là tiếp tuyến
CA là tiếp tuyến
Do đó: CE=CA
Xét (O) có
DE là tiếp tuyến
DB là tiếp tuyến
Do đó: DE=DB
Ta có: DE+CE=DC
nên CD=AC+BD
a: Xét (O) có
CA,CE là tiếp tuyến
nên CA=CE và OC là phân giác của góc AOE(1)
Xét (O) co
DE,DB là tiép tuyến
nên DE=DB và OD là phân giác của góc BOE(2)
CD=CE+ED
=>CD=CA+DB
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
a: Xét (O) có
CA,CE là tiếp tuyến
nên CA=CE và OC là phân giác của góc AOE(1)
Xét (O) có
DE,DB là tiếp tuyến
nên DE=DB và OD là phân giác của góc EOB(2)
CE+ED=CD
=>CD=CA+DB
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: CA=CE
OA=OE
Do đó: CO là trung trực của AE
DE=DB
OE=OB
Do đó: DO là trung trực của EB
Xét tứ giác EIOK có
góc EIO=góc EKO=góc IOK=90 độ
nên EIOK là hình chữ nhật
a: Xét (O) có
CE là tiếp tuyến có E là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CE=CA
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm
DE là tiếp tuyến có E là tiếp điểm
Do đó: DB=DE
Ta có: CD=CE+ED
nên CD=CA+DB
a: Xét (O) có
CE là tiếp tuyến
CA là tiếp tuyến
Do đó: CE=CA
Xét (O) có
DE là tiếp tuyến
DB là tiếp tuyến
Do đó: DE=DB
Ta có: CE+DE=CD
nên CD=CA+DB
b: Xét (O) có
CE,CA là các tiếp tuyến
nen CE=CA và OC là phân giác của góc AOE(1)
Xét (O) có
DE,DB là các tiếp tuyến
nên DE=DB và OD là phân giác của góc BOE(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: CA=CE
OA=OE
Do đó: OC là trung trực của AE
=>OC vuông góc với AE
DE=DB
OE=OB
Do đo; OD là trung trực của EB
=>OD vuông góc với EB
Xét tứ giác EIOK có
góc EIO=góc EKO=góc IOK=90 độ
nên EIOK là hình chữ nhật
d: OK*OD=OB^2
OI*OC=OA^2
mà OB=OA
nên OK*OD=OI*OC
a: Xét (O) có
CM,CA là tiếp tuyến
Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)
=>\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{MOA}\)
Xét (O) có
DM,DB là tiếp tuyến
Do đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)
=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)
\(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)
\(=\dfrac{1}{2}\cdot\widehat{MOA}+\dfrac{1}{2}\cdot\widehat{MOB}\)
\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
CD=CM+MD
mà CM=CA và DM=DB
nên CD=CA+DB
b: Xét ΔOCD vuông tại O có OM là đường cao
nên \(OM^2=CM\cdot MD\)
=>\(AC\cdot BD=R^2\)
c: CM=CA
OM=OA
Do đó: CO là đường trung trực của AM
=>CO\(\perp\)AM tại E
DM=DB
OM=OB
Do đó: OD là đường trung trực của MB
=>OD\(\perp\)MB tại F
Xét tứ giác MEOF có
\(\widehat{MEO}=\widehat{MFO}=\widehat{FOE}=90^0\)
=>MEOF là hình chữ nhật
=>EF=OM=R