Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
DC,DA là tiếp tuyến
=>DC=DA và OD là phân giác của góc COA
=>OD vuông góc AC
Xét (O) có
EC,EB là tiếp tuyến
=>EB=EC và OE là phân giác của góc COB(2)
=>OE là trung trực của BC
=>OE vuông góc CB
AD+BE=DC+CE=DE
b: Từ (1), (2) suy ra góc DOE=1/2*180=90 độ
Xét tứ giác CMON có
góc CMO=góc CNO=góc MON=90 độ
=>CMON là hình chữ nhật
c: OM*OD+ON*OE
=OC^2+OC^2
=2*R^2ko đổi
b) Vì DA,DM là tiếp tuyến \(\Rightarrow OD\) là phân giác \(\angle MOA\)
\(\Rightarrow\angle MOD=\dfrac{1}{2}\angle MOA\)
Vì CB,CM là tiếp tuyến \(\Rightarrow OC\) là phân giác \(\angle MOB\)
\(\Rightarrow\angle MOC=\dfrac{1}{2}\angle MOB\)
\(\Rightarrow\angle MOC+\angle MOD=\dfrac{1}{2}\left(\angle MOA+\angle MOB\right)\)
\(\Rightarrow\angle COD=\dfrac{1}{2}\angle AOB=\dfrac{1}{2}.180=90\)
c) Vì \(\angle COD=90\Rightarrow O\in\) đường tròn đường kính CD
Gọi E là tâm đường tròn đường kính CD \(\Rightarrow E\) là trung điểm CD
Ta có: E là trung điểm CD,O là trung điểm AB và ABCD là hình thang
\(\Rightarrow EO\parallel AD\) \(\Rightarrow EO\bot AB\Rightarrow AB\) là tiếp tuyến của đường tròn đường kính CD
a) Xét tứ giác ACEO có
\(\widehat{CAO}\) và \(\widehat{CEO}\) là hai góc đối
\(\widehat{CAO}+\widehat{CEO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ACEO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay A,C,E,O cùng nằm trên 1 đường tròn(đpcm)
ko biết vì chỉ đang học lớp 7 thui nha, ko biết để mà giúp
tui mới học lớp 8 .chưa học đường tròn.ko giúp được.sorry nha