K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

Trước tiên ta chứng minh với A, B, C là ba góc của 1 tam giác thì:

\(cos\left(2A\right)+cos\left(2B\right)+cos\left(2C\right)>-1\)

Ta có:

\(cos^2A+cos^2B+cos^2C=\frac{1+cos\left(2A\right)}{2}+\frac{1+cos\left(2B\right)}{2}+cos^2C\)

\(=1+\frac{cos\left(2A\right)+cos\left(2B\right)}{2}+cos^2C\)

\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(=1-cos\left(C\right).cos\left(A-B\right)+cos^2C\)

\(=1-cos\left(C\right)\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cos\left(C\right)\left(cos\left(A-B\right)-cos\left(A+B\right)\right)\)

\(=1-2cos\left(A\right).cos\left(B\right).cos\left(C\right)\)

Ta lại có:

\(-1\le cosA\le1;-1\le cosB\le1;-1\le cosC\le1\)

\(\Rightarrow cosA.cosB.cosC< 1\)

\(\Rightarrow cos\left(2A\right)+cos\left(2B\right)+cos\left(2C\right)=1-2cosA.cosB.cosC>1-2=-1\)

Quay lại bài toán ta có:

TH 1: Trong \(\overrightarrow{OA};\overrightarrow{OB};\overrightarrow{OC}\) có 2 vecto cùng phương ngược chiều giả sử là \(\overrightarrow{OA};\overrightarrow{OB}\) thì

\(\Rightarrow|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}|=|\overrightarrow{OC}|=OC=1\)

TH 2: Cả 3 vecto không cùng phương với nhau ta có  ABC tạo thành tam giác.

\(|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}|^2=OA^2+OB^2+OC^2+2\left(\overrightarrow{OA}.\overrightarrow{OB}+\overrightarrow{OB}.\overrightarrow{OC}+\overrightarrow{OC}.\overrightarrow{OA}\right)\)

\(=3+2\left(cos\left(2A\right)+cos\left(2B\right)+cos\left(2C\right)\right)>3-2=1\)

Đâu = xảy ra khi trong ba vecto có 2 vecto cùng phương ngược chiều. Hay khi khi tam giác ABC là tam giác vuông.

Trước tiên ta chứng minh với A, B, C là ba góc của 1 tam giác thì:

cos(2A)+cos(2B)+cos(2C)>−1

Ta có:

cos2A+cos2B+cos2C=1+cos(2A)2 +1+cos(2B)2 +cos2C

=1+cos(2A)+cos(2B)2 +cos2C

=1+cos(A+B).cos(A−B)+cos2C

=1−cos(C).cos(A−B)+cos2C

=1−cos(C)(cos(A−B)−cosC)

=1−cos(C)(cos(A−B)−cos(A+B))

=1−2cos(A).cos(B).cos(C)

Ta lại có:

−1≤cosA≤1;−1≤cosB≤1;−1≤cosC≤1

⇒cosA.cosB.cosC<1

⇒cos(2A)+cos(2B)+cos(2C)=1−2cosA.cosB.cosC>1−2=−1

Quay lại bài toán ta có:

TH 1: Trong →OA;→OB;→OC có 2 vecto cùng phương ngược chiều giả sử là →OA;→OB thì

⇒|→OA+→OB+→OC|=|→OC|=OC=1

TH 2: Cả 3 vecto không cùng phương với nhau ta có  ABC tạo thành tam giác.

|→OA+→OB+→OC|2=OA2+OB2+OC2+2(→OA.→OB+→OB.→OC+→OC.→OA)

=3+2(cos(2A)+cos(2B)+cos(2C))>3−2=1

Đâu = xảy ra khi trong ba vecto có 2 vecto cùng phương ngược chiều. Hay khi khi tam giác ABC là tam giác vuông.

7 tháng 11 2016

Bài 2 nếu ai giải được thì làm ơn gửi cho mình cách giải nhé!!Mình cũng có bài này mà ko giải được

3 tháng 2 2017

gõ sai ND kìa

29 tháng 5 2017

I A B O H D E C C'

  1. Vì \(\Delta ADC\)nội tiếp đường tròn đường kính AO \(\Rightarrow\widehat{ADO}=90^O\Rightarrow OD⊥AC\left(1\right)\)mà \(\Delta ABC\)nội tiếp đường tròn (O) \(\Rightarrow\widehat{ACB}=90^O\Rightarrow BC⊥AC\left(2\right)\)từ 1 và 2 có \(OD\downarrow\uparrow BC\)Mà O là trung điểm BC thì D sẽ phải là trung điểm AC => AD = DC
  2. do \(OH⊥BC\Rightarrow\widehat{CHO}=90^0\left(3\right)\)Mà \(\widehat{ODC}=90^0\left(4\right)\)TỪ 3 và 4 có D và H nhìn OC dưới cùng một góc vuông nên DOHC nội tiếp đường tròn đường kính OC
  3. Vì \(OA=OB=OC=\frac{AB}{2}=3,HB=2OH\Rightarrow HB=\frac{2}{3}OB=\frac{2.3}{3}=2\).Theo hệ thức lượng trong tam giác vuông \(\Delta BCA\)có \(BC=\sqrt{HB.AB}=\sqrt{2.6}=\sqrt{12}\)Và HA=AB-HB=6-2=4 => \(AC=\sqrt{AH.AB}=\sqrt{4.6}=2\sqrt{6}\Rightarrow DC=\frac{AC}{2}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)Xét Vuông \(\Delta DCB\)có:\(BD^2=DC^2+BC^2=6+12=18\),\(ID=IO=\frac{OA}{2}=\frac{3}{2}\),\(IB=IO+OB=\frac{3}{2}+3=\frac{9}{4}\)ta có :\(ID^2+BD^2=\frac{9}{4}+18=\frac{81}{4}=IB^2\)Vậy theo hệ thức lượng trong tam giác vuông có \(\Delta IDB\)Vuông tại D \(\Rightarrow ID⊥BD\)Mà ID là bán kính của (I) => BD là tiếp tuyến của (I)
17 tháng 11 2017

Bạn kia làm đúng rồiV^V

11 tháng 10 2019

a, MPHQ là hình chữ nhật => MH = PQ

b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA

c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của  O 2

Tương tự PQ cũng là tiếp tuyến ( O 1 )

20 tháng 11 2017

Tôi cũng có bài khó giống ý hệt bạn,vậy bạn có hướng làm chưa