K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
22 tháng 2 2023
a: Xet ΔOAC có OA=OC và OA^2+OC^2=AC^2
nên ΔOAC vuôg cân tại O
b: \(BC=\sqrt{AB^2-AC^2}=\sqrt{4R^2-2R^2}=R\sqrt{2}\)
c: ΔOAC vuông cân tại O
=>góc BAC=45 độ
Gọi N là giao điểm của AD và BC; H là giao điểm của MN và AB
Chứng minh góc AHM= 90; mà góc CAB 45(gt) nên tam giác AHM vuông cân
=>MH = AH
=>MH + HB = AH + HB = 2R (1)
* Tam giác MHB vuông tại H
HB = MB.cos MBH => MB= \(\frac{HB}{sosMBH}\)=\(\frac{HB}{cos60^0}\)=2HB
MH = MB. sin MBH => MH= MB. sin60=\(\frac{MB\sqrt{3}}{2}=HB\sqrt{3}\)
=> \(HB=\frac{MH}{\sqrt{3}}=\frac{\sqrt{3}MH}{3}\) (2)
Từ (1) và (2) ta có \(MH+\frac{\sqrt{3}MH}{3}=2R\Rightarrow MH=\frac{6R}{3+\sqrt{3}}=\left(3-\sqrt{3}\right)R\)
Vậy \(S=\frac{AB.MH}{2}=\frac{1}{2}.2R\left(3-\sqrt{3}\right)R=\left(3-\sqrt{3}\right)R^2\)
cảm ơn bạn, mình còn rất nhiều bt vì mình đang ôn đội tuyển, mong đc các bạn giúp đỡ