K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

DB,DC là tiếp tuyến

=>DB=DC

DB=DC

OB=OC

Do đó: OD là đường trung trực của BC

=>OD vuông góc BC

b: Xét (O) có

DB,DC là tiếp tuyến

Do đó: DO là phân giác của góc CDB

BC//GE

DO vuông góc BC

Do đó: DO vuông góc GE

Xét ΔDGE có

DO vừa là đường cao, vừa là đường phân giác

Do đó: ΔDGE cân tại D

=>DG=DE

ΔDGE cân tại D

mà DO là đường cao

nên O là trung điểm của GE

=>OG=OE

c: OG//BC

=>góc AOG=góc ABC(đồng vị) và góc COG=góc OCB(hai góc so le trong)

mà góc ABC=góc OCB

nên góc AOG=góc COG

=>OG là phân giác của góc COA

Xét ΔOCG và ΔOAG có

OC=OA

góc COG=góc AOG

OG chung

Do đó: ΔOCG=ΔOAG

=>góc OAG=góc OCG=90 độ

=>AG là tiếp tuyến của (O)

20 tháng 1 2017

O B A C M D N

20 tháng 1 2017

Đường thẳng AC (màu hồng) kẻ lúc làm câu b

29 tháng 4 2018

HS tự chứng minh

20 tháng 11 2021

a, Vì CA = CM ( tc tiếp tuyến cắt nhau ) 

OA = OM = R 

=> OC là đường trung trực đoạn AM 

=> OC vuông AM 

^AMB = 900 ( góc nội tiếp chắn nửa đường tròn ) 

=> AM vuông MB (1)

Ta có : DM = DB ( tc tiếp tuyến cắt nhau ) 

OM = OB = R 

=> OD là đường trung trực đoạn MB 

=> OD vuông MB (2) 

Từ (1) ; (2) => OD // AM 

b, OD giao MB = {T}

OC giao AM = {U} 

Xét tứ giác OUMT có ^OUM = ^UMT = ^MTO = 900

=> tứ giác OUMT là hcn => ^UOT = 900 

Vì CD là tiếp tuyến (O) với M là tiếp điểm => ^OMD = 900 

Mặt khác : BD = DM ( tc tiếp tuyến cắt nhau ) 

CM = AC ( tc tiếp tuyến cắt nhau ) 

Xét tam giác COD vuông tại O, đường cao OM 

Ta có : \(OM^2=CM.MD\)hay \(OM^2=AC.BD\)=> R^2 = AC.BD 

c, Gọi I là trung điểm CD 

O là trung điểm AB 

khi đó OI là đường trung bình hình thang BDAC 

=> OI // AC mà AC vuông AB ( tc tiếp tuyến ) => OI vuông AB 

Xét tam giác COD vuông tại O, I là trung điểm => OI = IC = ID = R 

Vậy AB là tiếp tuyến đường tròn (I;CD/2)