Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Vì A,E,M,B cùng nằm trên (O)
nên AEMB nội tiếp
góc AMB=1/2*180=90 độ
=>AM vuông góc IB
ΔIAB vuông tại A có AM vuông góc IB
nên IA^2=IM*IB
Lời giải:
a.
$AC, BD$ cùng vuông góc với $AB$ (do là tiếp tuyến)
$MH\perp AB$ (gt)
$\Rightarrow AC\parallel MH\parallel BD$. Áp dụng định lý Talet:
$\frac{MK}{BD}=\frac{MC}{CD}$
$\Rightarrow MK=\frac{MC.BD}{CD}(1)$
$\frac{HK}{AC}=\frac{BK}{BC}=\frac{MD}{DC}$
$\Rightarrow HK=\frac{AC.MD}{DC}(2)$
Theo tính chất 2 tiếp tuyến cắt nhau thì $AC=MC; BD=MD(3)$
Từ $(1); (2); (3)\Rightarrow HK=MK$ nên $K$ là trung điểm $MH$
b. Gọi $K'$ là giao của $AD$ với $MH$
Tương tự như câu a, áp dụng định lý Ta let:
$\frac{MK'}{CA}=\frac{DM}{DC}$
$\Rightarrow MK'=\frac{AC.DM}{DC}$
$\frac{HK'}{DB}=\frac{AK'}{AD}=\frac{CM}{CD}$
$\Rightarrow HK'=\frac{BD.CM}{CD}$
$\Rightarrow HK'=MK'$ nên $K'$ là trung điểm $MH$
$\Rightarrow K\equiv K'$ nên $BC, AD, MH$ đồng quy.
c. Không có dữ liệu điểm $E$.
a: Xét (O) có
DC,DA là tiếp tuyến
=>DC=DA và OD là phân giác của góc AOC(1)
Xét (O) có
EC,EB là tiếp tuyến
=>EC=EB và OE là phân giác của góc BOC(2)
Từ (1), (2) suy ra:
góc DOE=1/2(góc COA+góc COB)
=1/2*180=90 độ
b: DC+CE=DE
DC=DA
EB=EC
Do đó: DA+EB=DE
c: Xét ΔDOE vuông tại O có OC là đường cao
nên CD*CE=CO^2
=>CD*CE=R^2 không đổi
d: Sửa đề; Đường kính DE
Gọi K là trung điểm của DE
ΔDOE vuông tại O
=>O nằm trên đường tròn đường kính DE
=>O nằm trên (K)
Xét hình thang ADEB có
K,O lần lượt là trung điểm của DE,AB
=>KO là đường trung bình
=>KO//AD//EB
=>KO vuông góc AB
Xét (K) có
KO là bán kính
AB vuông góc KO tại O
Do đó: AB là tiếp tuyến của (K)
a, Tam giác AMB là tam giác gì? Vì sao?
b, CM: MA2=MB.MC
c, CM: MB.MC=AH.AB