Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
ΔBDC nội tiếp đường tròn(B,D,C∈(O))
BC là đường kính(gt)
Do đó: ΔBDC vuông tại D(Định lí)
⇔CD⊥BD tại D
⇔CD⊥AB tại D
⇔\(\widehat{ADC}=90^0\)
hay \(\widehat{ADH}=90^0\)
Xét (O) có
ΔBEC nội tiếp đường tròn(B,E,C∈(O))
BC là đường kính(gt)
Do đó: ΔBEC vuông tại E(Định lí)
⇔BE⊥CE tại E
⇔BE⊥AC tại E
⇔\(\widehat{AEB}=90^0\)
hay \(\widehat{AEH}=90^0\)
Xét tứ giác ADHE có
\(\widehat{ADH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{ADH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ADHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét ΔABE vuông tại E và ΔACD vuông tại D có
\(\widehat{BAE}\) chung
Do đó: ΔABE∼ΔACD(g-g)
⇔\(\dfrac{AB}{AC}=\dfrac{AE}{AD}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB\cdot AD=AC\cdot AE\)(đpcm)
a: góc HEB=1/2*180=90 độ
=>HE vuông góc AB
góc CFH=1/2*180=90 độ
=>HF vuông góc AC
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hcn
b: góc AEF=góc AHF=góc C
=>góc FEB+góc C=180 độ
=>FEBC nội tiếp
c: gọi I,K lần lượt là trung điểm của BH,CH
góc IEF=góc IEH+góc FEH
=góc IHE+góc FAH
=góc HAC+góc HCA=90 độ
=>FE là tiếp tuyến của (I)
góc KFE=góc KFH+góc EFH
=góc KHF+góc EAH
=góc HAB+góc HBA=90 độ
=>EF là tiếp tuyến của (K)