Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ 34 . 3n : 9 = 34 => 34 . 3n = 34 x 9 => 34 . 3n = 306 => 3n = 306 : 34 => 3n = 9 => n = 2
b/ 9 < 3n < 27 => 32 < 3n < 33 => 2 < n < 3
Mà: n thuộc N => n không tồn tại
c/ Chữ số tận cùng của 360 là 0
d/ Ta có: A = 1 + 3 + 32 + 33 + 34 + 35 + 36
=> 3A = 3 + 32 + 33 + 34 + 35 + 36 + 37
=> 3A - A = 2A = (3 + 32 + 33 + 34 + 35 + 36 + 37) - (1 + 3 + 32 + 33 + 34 + 35 + 36 ) = 3 + 32 + 33 + 34 + 35 + 36 + 37 - 1 - 3 - 32 - 33 - 34 - 35 - 36
=> 2A = 37 - 1 => A = (37 - 1) : 2 < 37 - 1 = B
=> A < B
Ta có 1!=1
2!=2
3!=6
4!=24
Nhưng 5!=...0(vì trong đó có tích của 5x2 nên co c/s tận cùng là 0) nên từ 5!,6!,7!,..n! đều có tận cùng là 0
=>A=1+2+6+24+..0+..0+..0+....+...0
A=...3
Vậy chữ số tận cùng của A là 3
Câu 2:
a = 2 ; b = 1
Câu 3:
N={ 1;2;3;4;5;6;10;12;15;20;30;60}
Có 12 phần tử.
Câu 4: Chữ số tận cùng của 71993 là 7
khó giải thích nhỉ kiểu C/M (1+1=2) này hơi mỏi
với n chẵn ta có 5^n=5^2k=25^k luôn có 2 số tận cùng với k>=1 là 25
với n lẻ ta có 5^n=5.^(2k+1)=5.5^(2k) =5.(25)^k {5.25 tận cùng 25
=> 5^n luôn có tận cùng là 25 với n>1
Ta có: \(S=7+7^2+7^3+...+7^{4k}\)
=>\(S=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
=>\(S=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)
=>\(S=7.400+...+7^{4k-3}.400\)
=>\(S=\left(7+...+7^{4k-3}\right).400\)
=>\(S=\left(7+...+7^{4k-3}\right).4.100\)
=>S chia hết cho 100
=>2 chữ số tận cùng của S là 00
n là bất kì số nào lớn hơn 1 thì chữ số tận cùng luôn = 5
Vì 5 x 5 luôn bằng 5
Bạn thấy: 5 x 5 = 25 (chữ số tận cùng là 5)
5 x 5 x 5 = 125 (chữ số tận cùng vẫn là 5)
5 x 5 x 5 x 5 x 5 x 5 x 5 = ..5 (chữ số tận cùng vẫn là 5)
=> Chữ số tận cùng của 5\(^n\)= 5 (dù n có là số nào đi chăng nữa, chú ý: n > 1)