Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2, 3, 4, 5, 6, 7 => Nếu số nguyên tố lớn hơn 3 thì khi chia cho8 thì phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia 8 dư 4 và dư 6)
=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 : 8 dư 1, 32 = 9 chia 8 dư 1, 52 = 25 chia 8 dư 1, 72 = 49 chia 8 dư 1)
Vậy cả p2 và q2 chia 8 dư 1 => \(p^2-q^2⋮8\)
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bonhf phương số đó khi chia cho 3 dư 1 ( vì 12 : 3 dư 1; 22 = 4 chia 3 dư 1)
Vậy cả p2 và q2 chia 8 dư 3 =>\(p^2-q^2⋮8\)
=> \(p^2-q^2\)đều chia hết cho 8 và 3, mà (8;3) = 1 (hai số nguyên tố cùng nhau)
=> \(p^2-q^2⋮3\times8\)=>\(p^2-q^2⋮24\)
tại cậu hay chê người khác kém bây giờ có bài cần hỏi người ta cũng không thèm giúp cậu
Vì n>2 ; n không chia hết cho 3 . Mà 3 là snt =>(n;3)=1.=>n^2 không chia hết cho 3. Vì n>2=>n^2-1 lớn hơn hoặc bằng 3. Sau đó bạn xét số dư n cho 3 rồi c tỏ n^2-1 chia hết cho 3 hoặc n^2+1 chia hết cho 3 nha .
Vì n>2 không chia hết cho 3
=> n2 : 3 dư 1
Nếu (n2 - 1) \(⋮\) 3 thì (n2 + 1) chia 3 dư 1
Nếu (n2 - 1) chia 3 dư 1 thì (n2 + 1) \(⋮\)3
=> (n2 - 1) và (n2 + 1) không thể đồng thời là số nguyên tố được.