Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(ƯC\left(14n+3;21n+4\right)=d\)
\(\Rightarrow3\left(14n+3\right)⋮d,2\left(21n+4\right)⋮d\)
\(\Rightarrow3\left(14n+3\right)-2\left(21n+4\right)⋮d\)
\(\Rightarrow42n+9-42n-8⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(ƯCLN\left(14n+3;21n+4\right)=Ư\left(1\right)=1\)
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
Gọi ƯCLN(4n+3; 2n+3) là d. Ta có:
4n+3 chia hết cho d
2n+3 chia hết cho d => 4n+6 chia hết cho d
=> 4n+6-(4n+3) chia hết cho d
=> 3 chia hết cho d
Giả sử ƯCLN(4n+3; 2n+3) \(\ne\)1
=> 2n+3 chia hết cho 3
=> 2n+3+3 chia hết cho 3
=> 2n+6 chia hết cho 3
=> 2(n+3) chia hết cho 3
=> n+3 chia hết cho 3
=> n = 3k - 3
Vậy để ƯCLN(2n+3; 4n+3) = 1 thì n \(\ne\) 3k-3
1) (2n-1;9n+4)=(2n-1;n+8)=(17;n+8)=1 hoặc 17
2) (7n+3;8n-1) =(7n+3;n-4)=(31;n-4)=1 hoặc 31
Gọi ƯCLN(4n+3; 2n+1) là d. Ta có:
4n+3 chia hết cho d
2n+1 chia hết cho d => 4n+2 chia hết cho d
=> 4n+3-(4n+2) chia hết cho d
=> 1 chia hết cho d
vậy d = 1
Vậy ƯCLN(4n+3;2n+1) = 1