K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

N thì ko thuộc N* chỉ có N* thuộc N đề sai rùi

19 tháng 8 2021

Ta có :

72 \(⋮\)12 \(\Rightarrow\)72n \(⋮\)12

48 \(⋮\)12

\(\Rightarrow\)72n + 48 \(⋮\)12

Ta lại có :

72 \(⋮\)\(\Rightarrow\)72n \(⋮\)9

48 \(⋮̸\)9

\(\Rightarrow\)72n + 48 \(⋮̸\)9

Vậy 72n + 48 chia hết cho 12 nhưng không chia hết cho 9

19 tháng 8 2021

Bạn sửa dấu lại hộ mình nhé

Từ đoạn :

72 chia hết cho 9 \(\Rightarrow\)72n chia hết cho 9

48 ko chia hết cho 9

\(\Rightarrow\)72n + 48 ko chia hết cho 9

9 tháng 8 2020

Đó là số 55555 vì :

55555 : 10 = 55555

55555 : 11111 = 5

27 tháng 5 2015

Ta có : \(1^n+2^n+3^n+4^n=10^n\) chia hết cho 5

Cũng biết, 5 chia hết cho các số có tận cùng = 0;5 .

Mà \(10^n\)có số tận cùng là 0 (vd: 105=100 000 ; 106=10 00 000..v...v) và n không chia hết cho 4(\(n\in N\)) nên sẽ chia hết cho 5

Vậy \(1^n+2^n+3^n+4^n\)chia hết cho 5 .

 

 

27 tháng 5 2015

 

+) Với n=4k+3 hoặc n=4k+1 => 1n+2n+3n+4n lẻ. k \(\in\)|N.

1n+2n+3n+4n đồng đư với 1n+2n+(-2)n+(-1)(mod 5) hay 1n+2n+3n+4n đồng đư với 1n+2n-2n-1n=0 (mod 5)

=> 1n+2n+3n+4n chia hết cho 5.

+) Với n=4k+2, k\(\in\)|N.

1+24k+2+34k+2+44k+2=1+22.24k+32.34k+42.44k

                                  =1+4.16k+9.81k+16.256k

                 đồng dư với : 1.1+4.1+9.1+16.1=30 (mod 5)

=> 1n+2n+3n+4n chia hết cho 5.

+) Với n=4k, k\(\in\)|N.

1n+2n+3n+4n = 1+24k+34k+44k

                      = 1+16k+81k+16k

       đồng dư với: 1+1+1+1=4 (mod 5)

=> 1n+2n+3n+4n không chia hết cho 5.

=> ĐPCM

1 tháng 6 2017

Lop 5 mà học dạng này rồi à?? 

1 tháng 6 2017

toán chứng minh chưa có học nên chưa có biết

11 tháng 8 2016

1+2+3+...+n = \(\frac{n\left(n+1\right)}{2}\)

A=\(\frac{n\left(n+1\right)}{2}\)-7

Để a chia hết cho 10 thì \(\frac{n\left(n+1\right)}{2}\) có tận cùng 7 tức là n(n+1) có tận cùng 4

vô lí vì tích 2 số liên tiếp chi có tận cùng là 0, 2, 6 nên A không chia hết cho 10

11 tháng 8 2016

đề thiếu gì thì p bạn ạ