Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
a) Chữ số tận cùng của 74n là : ( 7 * 7 * 7 * 7 ) mod 10 = 1
Vậy chữ số tận cùng của 74n - 1 là : ( 7 * 7 * 7 * 7 - 1 ) mod 10 = 0 ( đpcm )
b) Tương tự
Vì \(n\in N\)mà n là số tự nhiên chia hết cho 3 nên
=> n= {3,6,9}
thay 3 vào n, ta có: 3(3+1)(4.3+1)
= 3 x 4 x 13
=156
vậy n= 3 để N chia hết cho 2 và 3
tk cho cj nha em iu!
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)