K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2015

Ta có : n2 + n + 1 = n. ( n + 1) + 1

Vì n. ( n + 1) + 1 là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 => n. ( n + 1) + 1 là 1 số lẻ nên không chia hết cho 4

n. ( n + 1) + 1 không có chữ số tận cùng là 4 và 9 nên không tận cùng là 0 và 5 nên không chia hết cho 5

16 tháng 4 2015

n^2 + n = n.(n+1) . Tích của 2 số tự nhiên liên tiếp luôn chia hết cho 2 nên khi +1 sẽ ko chia hết cho 2 -> ko thể chia hết cho 4

Xét tận cùng của tích 2 số tự nhiên liên tiếp :

...0 . ...1 = ...0             ....5 . ....6 = ....0

...1 . ...2 = ...2            ....6 . .....7 = .....2

...2 . ....3= ...6           ....7 . .....8 = .....6

...3 . ....4 = ...2           ....8 . .....9 = .....2

...4 . ...5 = ....0           ....9 .  ....0 = .....0

Kết luận đc tích 2 số tự nhiên liên tiếp phải có tân cùng là 0 ,2 ,6 . Khi + 1 thì tân cùng là 1, 3,7 khác 0 và 5 nên ko chia hết cho 5

2 tháng 11 2017

a, A= (n+2)^2 + 1

Vì số cp chia 8 dư 0 hoặc 1 hoặc 4 => A=(n+2)^2 + 1 chia 8 dư 1 hoặc 2 hoặc 5

=> A ko chia hết cho 8

b, n lẻ nên n có dạng 2k+1(k thuộc N)

<=> 5^n = 5^2k+1= = 5^2k . 5 =  (4+1)^2k  .  5  =  (Bội của 4 +1) . 5 = Bội của 4 +5 chia 4 dư 1

=> B = 5^n - 1 chia hết cho 4

21 tháng 11 2015

đọc xong đề bài chắc chết mất 

17 tháng 1 2016

trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!

8 tháng 8 2017

Sử dụng phương pháp phản chứng 
Giả sử n chia hết cho 5 
=>n có dạng 5k 
=>\(\text{n}^2+\text{n}+1=25k^2+5k+1=5k\left(5k+1\right)+1\)
ta có 5k(5k+1) chia hết cho 5 mà 1 ko chia hết cho 5 
=>25k^2+5k+1 ko chia hết cho 5

(đpcm)

8 tháng 8 2017

 \(\text{n^2+n+1 = n(n+1) +1 }\)
vì n(n+1) luôn là số chẵn suy ra n(n+1)+1 luôn lẻ --> ko chia hết cho 4