K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

gọi d là ƯCLN(n;n+1)=d.theo bài ra ta có:

n;n+1 chia hết cho d

=>n+1-n chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(n;n+1)=1

=>đpcm

5 tháng 12 2021

Công Thành ơi, (đpcm) là gì vậy bạn?

2 tháng 12 2017

Gọi UCLN(2n+5,3n+7)là d(d\(\in N) \)

Ta có \(\begin{cases}2n+5 \vdots d \\3n+7 \vdots d \end{cases}\)<=>\(\begin{cases}6n+15 \vdots d \\6n+14 \vdots d \end{cases}\)

=> 6n+15-6n-14\(\vdots d\)

\(=> 1\vdots d \)

=> d \(\in Ư(1)=(1)\)

Vậy d=1

9 tháng 8 2018

Gọi d = ƯCLN ( 2n + 5 , 3n + 7 ) . ⇒ 2n + 5 ⋮ d ; 3n + 7 ⋮ d . ⇒ 3 * ( 2n + 5 ) ⋮ d ; 2 * ( 3n + 7 ) ⋮ d . ⇒ 6n + 15 ⋮ d ; 6n + 15 ⋮ d . ⇒ ( 6n + 15 ) - ( 6n + 15 ) ⋮ d . ⇒ 1 ⋮ d . ⇒ d ∈ Ư ( 1 ) = { -1 ; 1 } . Vì d lớn nhất nên d = 1 . Vậy bài toán được chứng minh .

11 tháng 9 2016

Gọi d là ƯCLN  của 3n + 5 và 6n + 9 (d thuộc N)

Khi đó : 3n + 5 chia hết cho d và 6n + 9 chia hết cho d

<=> 2.(3n + 5) chia hết cho d và 6n + 9 chia hết cho d

=> 6n + 10 chia hết cho d và 6n + 9 chia hết cho d

=> (6n + 10) - (6n + 9) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ƯCLN ( 3n + 5; 6n + 9) = 1 (đpcm)

16 tháng 11 2017

Bạn kia làm đúng rồi^_^

14 tháng 12 2020

Mình chỉ tạm thời trả lời câu c thôi:

+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2

suy ra: n.(n+5) sẽ chia hết cho 2                    (1)

+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2

suy ra: n.(n+5) sẽ chia hết cho 2                   (2)

 Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n

17 tháng 12 2018

bai 1 

26 - |x +9| = -13

|x + 9|= 26 - (-13)

|x + 9| = 39

        x  =39 + 9

        x = 48

15 - |x - 31| = 11

       |x - 31| = 15 - 11

       |x - 31| = 4

                x = 4 + 31

                x = 35

17 tháng 12 2018

Bài 1:

26 - |x+9| = -13

|x+9| = 39

TH1: x + 9 = 39 => x = 30

TH2: x + 9 = -39 => x = - 48

KL:...

b) 15 - | x-31| = 11

|x-31| = 4

TH1: x-31 = 4 => ...

TH2: x-31 = -4 =>...

23 tháng 12 2017

Gọi d là ƯCLN(n;n+1)

Ta có :

n chia hết cho d

n+1 chia hết cho d

Suy ra : (n+1)-n Chia hết cho d 

Hay 1 chia hết cho d 

Suy ra : d thuộc Ư(1) = {1}

Vậy d= 1 hay ƯCLN(n;n+1)=1 (đpcm)

23 tháng 12 2017

cái này là 2 số tự nhiên đôi 1 nên chuyện ucln của nó =1 là chuyện bình thường nhe bạn

28 tháng 11 2016

Vì n \(\in\)N* => 2n + 3 \(\in\)N*

3n + 4 \(\in\)N*

Gọi d = ƯCLN(2n+3,3n+4)

=> (2n+3) \(⋮\)d và (3n+4) \(⋮\)d

=> [3(2n+3)] \(⋮\)d và [2(3n+4)] \(⋮\)d

=> (6n+9) \(⋮\)d và (6n+8) \(⋮\)d

=> [(6n+9) - (6n+8)] \(⋮\)d

=> (6n+9-6n-8) \(⋮\)d

=> [(6n-6n)+(9-8)] \(⋮\)d

=> 1 \(⋮\)d

=> d \(\in\)Ư(1)

=> d = 1

Vậy ƯCLN(2n+3,3n+4) = 1 với n \(\in\)N*

28 tháng 11 2016

Thanks bạn nha!!!