Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
∗)∗) Với giá trị nào của nn thì n+10,n−10n+10,n−10 và n+60n+60 là những số nguyên tố
−− Xét n=3kn=3k thì n+60n+60 là hợp số
−− Xét n=3k+1n=3k+1 thì n−10⋮3n−10⋮3
Để n+10,n−10n+10,n−10 và n+60n+60 là những số nguyên tố thì n−10=3n−10=3 hay n=13n=13
−− Xét n=3k+2n=3k+2 thì n+10n+10 là hợp số
∗)∗) Khi n=13n=13 thì n+90=103n+90=103 là số nguyên tố.
Vậy với giá trị của nn để n+10,n−10n+10,n−10 và n+60n+60 là những số nguyên tố thì n+90n+90 cũng là số nguyên tố.
\(*)\) Với giá trị nào của \(n\) thì \(n-10;n+10;n+60\) là những số nguyên tố:
- Xét \(n=3k\Rightarrow n+60\) là hợp số
- Xét \(n=3k+1\Rightarrow n-10⋮3\)
Để \(n+10;n-10;n+60\) là những số nguyên tố thì \(n-10=3\) hay \(n=13\)
- Xét \(n=3k+2\Rightarrow n+10\) là hợp số
\(*)\) Khi \(n=13\Rightarrow n+90\) là số nguyên tố
Vậy \(n=13\)
\(\Rightarrow\) Với giá trị của \(n\) để \(n-10;n+10;n+60\) là những số nguyên tố thì \(n+90\) cũng là số nguyên tố (Đpcm)
Gọi d là ƯC của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d
<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
Gọi d là ƯC của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d
<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
\(n=2\)không thỏa.
\(n=3\)thỏa.
\(n>3\)khi đó \(n\)có dạng \(3k+1\)hoặc \(3k+2\).
Với \(n=3k+1\)thì \(n+14=3k+15⋮3\)nên không là số nguyên tố.
Với \(n=3k+2\)thì \(n+10=3k+12⋮3\)nên không là số nguyên tố.
Vậy chỉ có \(n=3\)thỏa mãn.
đề bài yêu cầu gì vậy bạn
mk quên chứng minh n+ 90 là số nguyên tố