Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n là số nguyên tố lớn hơn 3 thì n=3k+1 hoặc n=3k+2
Trường hợp 1) Nếu n=3k+1 thì 2n+1=2.(3k+1)+1=2.3k+2+1=6k+3 mà 6k+3 chia hết cho 3 nên 2n+1 là hợp số. Suy ra: n khác 3k+1.
Trường hợp 2) Nếu n=3k+2 thì 2n+1=2.(3k+2)+1=2.3k+2.2+1=6k+4+1=6k+5 không chia hết cho số nào cả ngoại trừ 1 và 6k+5 nên 2n+1 là số nguyên tố nên n=3k+2.
Ta có:4n+1=4.(3n+2)+1=4.3n+4.2+1=12n+8+1=12n+9 chia hết cho 1;3;12n+9 nên 4n +1 là hợp số.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Lời giải:
a.
$2n^2+n-6=n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1$ là ước của $6$
Mà $2n+1$ lẻ nên $2n+1\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$
b.
Vì $p$ là số nguyên tố lớn hơn 3 nên $p=3k+1$ hoặc $p=3k+2$
Với $p=3k+1$ thì $p^2-1=(p-1)(p+1)=3k(3k+2)\vdots 3$
Với $p=3k+2$ thì $p^2-1=(p-1)(p+1)=(3k+1)(3k+3)=3(3k+1)(k+1)\vdots 3$
Suy ra $p^2-1$ luôn chia hết cho $3$ (*)
Mặt khác:
$p$ lẻ nên $p=2k+1$. Khi đó: $p^2-1=(p-1)(p+1)=2k(2k+2)$
$=4k(k+1)\vdots 8$ (**) do $k(k+1)\vdots 2$ (tích 2 số nguyên liên tiếp)
Từ (*) ; (**) suy ra $p^2-1\vdots (3.8)$ hay $p^2-1\vdots 24$.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
câu 1 :
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
xét n chẵn
=>n=2k
=>2n=22k=22k=4k
4 đồng dư với 1(mod 3)
=>4k đồng dư với 1(mod 3)
=>4k-1 đồng dư với 0(mod 3)
=>2n-1 là hợp số(trái giả thuyết)
=>n lẻ=>n=2k+1
=>2n=22k+1=22k.2
=4k.2
4 đồng dư với 1(mod 3)
=>4k đồng dư với 1(mod 3)
=>4k.2 đồng dư với 2(mod 3)
=>2n-1 chia 3 dư 1
=>2n-1=3q+1
=>2n+1=3q+1+2=3q+3=(q+1)3 chia hết cho 3
=>2n+1 là hợp số
=>đpcm