Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n\)là số nguyên tố lớn hơn \(3\)nên có dạng \(n=3k+1\)hoặc \(n=3k+2\)với \(k\inℕ^∗\).
Với \(n=3k+1\): \(n^2=\left(3k+1\right)^2=9k^2+6k+1\)chia cho \(3\)dư \(1\).
Với \(n=3k+2\): \(n^2=\left(3k+2\right)^2=9k^2+12k+4\)chia cho \(3\)dư \(1\).
Do đó \(n^2\)đều chia cho \(3\)dư \(1\).
Khi đó \(n^2+2021\)chia hết cho \(3\).
Mà \(n^2+2021>3\)do đó \(n^2+2021\)là hợp số.
p là số nguyên tố > 3 =>p có dạng 3k+1 và 3k+2
+) Với p=3k+2 thì p+4=3k+2+4=3k+6 chia hết cho 3 =>p+4 là hợp số
Vậy 3k+1 thì p+4 là số nguyên tố
+) Với p=3k+1 thì p+8=3k+1+8=3k+9 chia hết cho 3 => p+8 là hợp số
Vậy p=3k+1 thì p+8 là hợp số
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm rồi dễ lắm bạn ạ
đùa tí bạn ấn vào dòng chữ xanh này nhé Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath