Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(2n+3;3n+4)
Hay( 2n+3-3n+4) chia hết cho d
Hay3(2n+3)-2(3n+4) chia hết cho d
Hay 6n+9-6n+8 chia hết cho d
Hay d=1
Nên:ƯCLN(2n+3;3n+4)=1
k mình nha
Gọi a=ƯCLN(2n+3,3n+4), a\(\in\)N*.
=> 2n+3 \(⋮\)a
và 3n+4 \(⋮\)a.
=> 6n+9\(⋮\)a
và 6n+8\(⋮\)a
=>(6n+9) - (6n+8) \(⋮\)a
=> 1 \(⋮\)a
=> a = 1
vậy ƯCLN(2n+3;3n+4)=1.
Gọi d ∈ ƯCLN (2n + 3; 3n + 4) nên ta có :
2n + 3 ⋮ d và 3n + 4 ⋮ d
=> 3(2n + 3) ⋮ d và 2(3n + 4) ⋮ d
=> 6n + 9 ⋮ d và 6n + 8 ⋮ d
=> (6n + 9) - (6n + 8) ⋮ d
=> 1 ⋮ d => d = 1
Vậy ƯCLN (2n + 3; 3n + 4) = 1
gọi ƯCLN(2n+3; 3n+4) là d
=>2n+3 chia hết cho d
3n+4 chia hết cho d
=>6n+9 chia hết cho d
6n+8 chia hết cho d
=>(6n+9)-(6n+8) chia heets cho d
=>1 chia hết cho d
mà 1 chia hết cho 1
=>d=1
=>ƯCLN(2n+3; 3n+4)=1
vậy...
gọi d= ƯCLN (2n+3;3n+4)
Ta có : 2n+3 chia hết cho d
3n+4 chia hết cho d
Suy ra 3(2n+3)-2(3n+4) chia hết cho d
Suy ra (6n+9)-(6n+8) chia hết cho d
Suy ra 1 chia hết co d
vậy d = 1 hoặc -1
gọi UWCLN(2n+3,3n+4)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8d⋮\end{cases}}\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\)
mà \(1⋮1\)
=>d=1
=>ƯCLN(2n+3,3n+4)=1
vậy...
Gọi d là ƯCLN(2n+3;3n+4)
=>3n+4 chia hết cho d
2n+3 chia hết cho d
=>3n+4-2n-3 chia hết cho d
=>n+1 chia hết cho d
=>3n+3 chia hết cho d
Do 3n+3 và 3n+4 là 2 số nguyên liên tipees mà 3n+3 và 3n+4 cùng chia hết cho d=>d=1
=>ƯCLN(3n+4;2n+3)=1
1