Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=102+18n-1
=10n-1+18n
=9999...9(n c/số 9)+18n
=9.11111...1(n c/số 1)+9.2n
=9(1111...1(n c/số 1+2n)
mà 111...1(n c/số 1)=n+9q
=>A=9.(9q+n+2n)
=>A=9(9q+3n)
=9.3.(3q+n)
=27(3q+n)
=>\(A⋮27\)
vậy...(đccm)
mấy bài sau dễ òi
bn tự làm nhé
1/ So sánh A với \(\frac{1}{4}\)
Có \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.........+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-.......+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{1}{2}-\frac{1}{2015.2016}\)
Vậy \(A>\frac{1}{4}\)
a) Có: \(n=24k-7=12.2k-12+12-7=12.\left(2k-1\right)+5\) chia 12 dư 5.
b)
\(n=11...122...22\) ( có 20 chữ số 1 và 20 chữ số 2)
\(=111...11.10^{20}+222...222\) ( mỗi 111....111 có 20 chữ số 1 và 22...22 có 20 chữ số 2)
\(=111...11.10^{20}+2.111...11\) ( mỗi 111...111 có 20 chữ số 1)
\(=111...11\left(10^{20}+2\right)\) ( có 20 chữ số 1)
\(=111...111\left(999...999+1+2\right)\)( có 20 chữ số 1 và 20 chữ số 9)
\(=111...111\left(333...333\times3+3\right)\)( 111....111 có 20 chữ số 1 và 333...333 có 20 chữ số 3)
\(=333...333\left(333...333+1\right)\)( mỗi 333...333 gồm 20 chữ số 3)
là tích của hai số tự nhiên liên tiếp.