K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

\(n^3-4n=n\left(n^2-4\right)=n\left(n-2\right)\left(n+2\right)\)

Vì n chẵn => n - 2 và n + 2 cũng là số chẵn

Có n(n-2)(n+2) chia hết cho 2 và 4

\(\Rightarrow n^3-4n⋮\left(2.4.2\right)=16\)

\(n^3+4n=n^3-n+5n=n\left(n^2-1\right)+5n=\left(n-1\right)n\left(n+1\right)+5n\)

Có \(\left(n-1\right)n\left(n+1\right)⋮2;3;4\)

\(5n⋮2\)

\(\Rightarrow n^3+4n⋮16\)

27 tháng 7 2018

Gọi n là 2k

\(\Rightarrow n^3-4n=\left(2k\right)^3-4.2k=8k^3-8k=8k\left(k^2-1\right)=8k.\left(k-1\right)\left(k+1\right)\)

Với k chẵn

\(\Rightarrow8k⋮16\Rightarrow8k.\left(k-1\right)\left(k+1\right)⋮16\Rightarrow n^3-4n⋮16\)(1)

Với k lẻ

\(\Rightarrow k-1⋮2\Rightarrow8k\left(k-1\right)⋮16\Rightarrow8k.\left(k-1\right)\left(k+1\right)⋮16\Rightarrow n^3-4n⋮16\)(2)

Từ (1) và (2)

\(\Rightarrow n^3-4n⋮16\)

Tương tự

                     

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

20 tháng 1 2020

Bạn tham khảo tại đây nhé!! 

olm.vn/hoi-dap/detail/195135296784.html

20 tháng 1 2020

\(n^4-4n^3-4n^2+16n=n\left(n^3-4n^2-4n+16\right)\)

\(=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]=n\left(n-4\right)\left(n^2-4\right)=n\left(n-4\right)\left(n-2\right)\left(n+2\right)\)

Vì n là số tự nhiên chẵn \(\Rightarrow n=2k\)\(k\inℕ\))

\(\Rightarrow2k\left(2k-4\right)\left(2k-2\right)\left(2k+2\right)=16k\left(k-2\right)\left(k-1\right)\left(k+1\right)\)

Vì \(k\)\(k-2\)\(k-1\)\(k+1\)là 4 số tự nhiên liên tiếp

\(\Rightarrow\)Luôn tồn tại ít nhất 2 số chẵn liên tiếp \(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮8\)

Vì \(k\)\(k-1\)\(k+1\)là 3 số tự nhiên liên tiếp \(\Rightarrow k\left(k-1\right)\left(k+1\right)\left(k-2\right)⋮3\)

mà \(\left(3;8\right)=1\)\(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮24\)

\(\Rightarrow16k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮384\)

hay \(n^4-4n^3-4n^2+16n⋮384\)

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

Ta phân tích biểu thức đã cho ra nhân tử :

A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n

=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)

=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)

=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

29 tháng 10 2015

a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)

vì n chẵn nên đặt n=2k

\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)

vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2

=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16

\(n^3+4n=n^3-4n+8n\)

đặt n=2k

=>\(8\left(k-1\right)k\left(k+1\right)+16k\)

mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16

26 tháng 2 2022

Ta có: n5−n=n(n4−1)=n(n−1)(n+1)(n2+1)

CM n5−n⋮3

Ta thấy n,n+1,n−1 là ba số nguyên liên tiếp nên chắc chắn tồn tại một số chia hết cho 3

⇒n(n−1)(n+1)⋮3⇔n5−n⋮3(1)

CM n5−n⋮5

+) n≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡1(mod5)⇒n−1≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡2(mod5)⇒n2≡4(mod5)⇒n2+1≡0(mod5)

⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡3(mod5)⇒n2≡9(mod5)⇒n2+1≡0(mod5)

⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡4(mod5)⇒n+1≡0(mod5)

⇒n5−n=n(n+1)(n−1)(n2+1)⋮5

Do đó, n5−n⋮5(2)

CM n5−n⋮16

Vì n lẻ nên đặt n=4k+1;4k+3 Khi đó:[n2=16k2+1+8kn2=16k2+9+24k⇒ n2≡1(mod8)

⇒n2−1⋮8

Mà n lẻ nên n2+1⋮2

Do đó n5−n=n(n2−1)(n2+1)⋮16(3)

Từ (1),(2),(3)⇒n5−n⋮(16.3.5=240) (đpcm)

Chúc bạn học tốt!