Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có 2005 đường thẳng cắt nhau mà có 2006 đường thẳng . sô 2006. 2005 giao điểm mà mỗi giao điểm đc tính hai lần nên => 2006.2005 :2 = 2011015 . đúng nhá . k cho mình vs
có n điểm dường thẳng trong đó bất cứ 2 dường thẳng nào cũng cắt nhau, ko có 3 đường thẳng nào đi qua 1 điểm
=> số giao điểm là :
n . (n-1) : 2 = 780
n . (n-1) = 1560= 40 x 39
=> n = 40
Vậy có 40 đường thẳng
Vì bất cứ hai đường thẳng nào cx cắt nhau, ko có ba đường thẳng nào cùng đi qua một điểm.ta có công thức:n(n+1)/2.
a)từ giả thiết :n(n+1)/2=1128
n(n+1)=1128*2=2256
suy ra n=47
b)Không.Vì không có n9n+10 nào =2017*2=4034
a) Ta thấy rằng
- Đường thẳng thứ nhất giao với đường thẳng còn lại, do đó có giao điểm.
- Đường thẳng thứ hai giao với đường thẳng còn lại, do đó có giao điểm.
...
- Đường thẳng thứ giao với 2 đường thẳng còn lại, do đó có 2 giao điểm.
- Đường thẳng thứ giao với đường thẳng còn lại, do đó có 1 giao điểm.
Do tổng số giao điểm là
Ta có
=>n(n−1)2=1128
<=>n(n−1)=2256
<=>n(n−1)=48.47
Vậy n=48
Do đó có 48 đường thẳng.
b) Giả sử số giao điểm là 2017.
Khi đó ta có
=>n(n−1)=2017.2
<=>n(n−1)=4034
<=>n(n−1)=2.2017
Vậy không thể có số giao điểm là 2017.
\(1\)đường thẳng sẽ tạo \(n-1\)giao điểm với các đường thẳng còn lại.
\(n\)đường thẳng sẽ tạo \(n\left(n-1\right)\)giao điểm.
Do số giao điểm được tính \(2\)lần nên số giao điểm thực tế là \(\frac{n\left(n-1\right)}{2}\).
Ta có: \(\frac{n\left(n-1\right)}{2}=780\Rightarrow n=40\)
Theođề, ta có: n(n+1)/2=780
=>n(n+1)=1560
=>n^2+n-1560=0
=>n=39