\(M=x-\frac{1}{2}+\frac{3}{4}-x\)

tìm GTNN và GTLN ( nếu có ) của M

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2015

\(M=x-\frac{1}{2}+\frac{3}{4}-x=\left(x-x\right)+\left(\frac{3}{4}-\frac{1}{2}\right)=\frac{1}{4}\)

26 tháng 10 2015

a)x-x-1/2+3/4

=-1/2+3/4=1/4

 

27 tháng 7 2017

Bài 3:

a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)

Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN

Mà \(\left|2x-\frac{1}{5}\right|\ge0\)

Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi

\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)

b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)

Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN

mà \(x+\frac{1}{2}\ge0\)

Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)

Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)

và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)

Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2

Phần b này thì mình không chắc lắm bạn tự xem lại nhé

27 tháng 7 2017

Bài 1: 

\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))

=> 11 - x = 1

=> x = 10

Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

10 tháng 6 2016

a) (Nếu là tính M khi x = 1)

\(M=\left|1-\frac{1}{2}\right|+\frac{3}{4}=\left|\frac{1}{2}\right|+\frac{3}{4}=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}\)

b) Ta có : \(\left|x-\frac{1}{2}\right|\ge0\)

=> \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)

GTNN của M là \(\frac{3}{4}\) <=> \(\left|x-\frac{1}{2}\right|=0\) <=> \(x=\frac{1}{2}\)

9 tháng 6 2016

a) Tính M khi x - 1 là sao bạn ?

10 tháng 6 2016

a) Khi x = 1 thì \(M=\left|1-\frac{1}{2}\right|+\frac{3}{4}=\left|\frac{1}{2}\right|+\frac{3}{4}=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}\)

b) Ta có \(\left|x-\frac{1}{2}\right|\ge0\)

\(\Rightarrow\left|x-\frac{1}{2}\right|\) \(+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNN của M là \(\frac{3}{4}\) <=> \(\left|x-\frac{1}{2}\right|=0\) <=> x = \(\frac{1}{2}\)

Bài 1:

Ta có: \(\sqrt{x}+\frac{9}{2}\)nhỏ nhất khi và chỉ khi \(\sqrt{x}\)nhỏ nhất

\(\sqrt{x}\ge0\). Dấu "=" xảy ra khi và chỉ khi x=0.

Khi đó M=\(\frac{9}{2}\)

⇒ M nhỏ nhất bằng \(\frac{9}{2}\)khi và chỉ khi x=0.

Bài 2:

Ta có:

\(N=\frac{1}{\sqrt{x}+3}\) lớn nhất khi và chỉ khi \(\sqrt{x}+3\) nhỏ nhất ⇒\(\sqrt{x}\)nhỏ nhất

Ta có: \(\sqrt{x}\ge0\). Dấu "=" xảy ra khi và chỉ khi x=0. Khi đó N=\(\frac{1}{3}\) ⇒ N lớn nhất bằng \(\frac{1}{3}\)khi và chỉ khi x=0.
12 tháng 2 2020

Cảm ơn bn nhìu!vui