K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

Bổ sung đề \(m\in Z\)

\(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m^2+3m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(m\left(m+1\right)\left(m+2\right)\) là tích 3 số liên tiếp nên chia hết cho 3.

Khi đó C có dạng:\(\frac{3k+2}{3k}\) nên là số hữu tỉ.

18 tháng 7 2019

zZz Cool Kid zZzMình cx mới vừa nghĩ ra cách c/m lun.

Đầu tiên mình chứng minh C là p/s tối giản và mẫu chia hết cho 3, tử ko chia hết cho 3 nên C là số thập phân vô hạn tuần hoàn.

Suy ra C là số hữu tỉ

30 tháng 3 2016

ko phăn tích đc => tồi giản

18 tháng 2 2020

với \(m\in N\) nhé

14 tháng 3 2020

a)Ta có: \(m^3+3m^2+2m+5=m.\left(m^2+3m+2\right)+5\)

                                                       \(=m.\left[m.\left(m+1\right)+2.\left(m+1\right)\right]+5\)

                                                       \(=m.\left(m+1\right).\left(m+2\right)+5\)

Giả sử \(d\) là ƯCLN của  \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\) 

\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) chia hết cho d và \(m.\left(m+1\right).\left(m+2\right)+6\) chia hết cho \(d\)

\( \implies\) \(\left[m.\left(m+1\right).\left(m+2\right)+6\right]-\left[m.\left(m+1\right).\left(m+2\right)+5\right]\) chia hết cho \(d\)

\( \implies\) \(1\) chia hết cho \(d\) 

\( \implies\) \(d=1\) 

\( \implies\)  \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\) nguyên tố cùng nhau 

Vậy \(A\) là phân số tối giản

b)Ta thấy : \(m;m+1;m+2\) là \(3\) số tự nhiên liên tiếp nên nếu \(m\) chia \(3\) dư \(1\) thì \(m+2\) chia hết cho \(3\) ; nếu  \(m\) chia \(3\) dư \(2\) thì \(m+1\) chia hết cho \(3\)

 Do đó : \(m.\left(m+1\right).\left(m+2\right)\) chia hết cho \(3\) . Mà \(6\) chia hết cho \(3\)

\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+6\) có ước nguyên tố là \(3\) 

Vậy \(A\) là số thập phân vô hạn tuần hoàn 

1.tìm x thuộc Q biết rằng:a) (x + 1)(x - 2 )< 0       ;                     b) (x - 2)(x + \(\frac{2}{3}\)) > 0c) \(x+\left(-\frac{3}{4}\right)=\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{2001}+\frac{11}{4002}\right).\frac{2001}{25}+\frac{9}{2}\right]\)2. cho số hữu tỉ x=\(\frac{m-2015}{2016}\) với giái trị của m thì:a) x là số dương                                  b) x là số âmc) x không là số...
Đọc tiếp

1.tìm x thuộc Q biết rằng:
a) (x + 1)(x - 2 )< 0       ;                     b) (x - 2)(x + \(\frac{2}{3}\)) > 0
c) \(x+\left(-\frac{3}{4}\right)=\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{2001}+\frac{11}{4002}\right).\frac{2001}{25}+\frac{9}{2}\right]\)
2. cho số hữu tỉ x=\(\frac{m-2015}{2016}\) với giái trị của m thì:
a) x là số dương                                  b) x là số âm
c) x không là số dương cũng không là số âm
3. Cho số hữu tỉ x=\(\frac{20m+11}{-2015}\) với giái trị nào của m thì:

a) x là số dương                           b) x là số âm
4. tìm số nguyên a để số hữu tỉ x=\(\frac{-101}{a+7}\)là 1 số nguyên
tìm các số nguyên x để số hữu tỉ t=\(\frac{3x-8}{x-5}\)là 1 số nguyên
chứng tỏ số hữu tỉ x=\(\frac{2m+9}{14m+62}\)là phân số tối giản, với mọi m thuộc N

2
9 tháng 8 2015

b, Để \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

=>    TH1:  x - 2 > 0 =>  \(x\in\) Các số nguyên dương > 2

TH2: \(x+\frac{2}{3}>0\)

=>  \(x\in\) Các số nguyên dương và số 0

Mà :  \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

=>   x thuộc các số nguyên dương > 2 

 

9 tháng 8 2015

lắm thế nhìn là ngại rồi vậy giải bằng niềm tin à

a: \(C=\dfrac{m\left(m^2+3m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=\dfrac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=1\)

Do đó: C là phân số tối giản

b: Phân số C=1/1 được viết dưới dạng là số thập phân hữu hạn

26 tháng 9 2016

a) \(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(C=\frac{m^3+2m^2+m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(C=\frac{m^2.\left(m+2\right)+m.\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(C=\frac{\left(m+2\right).\left(m^2+m\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(C=\frac{\left(m+2\right).m.\left(m+1\right)+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{a}{a+1}\)

Gọi d = ƯCLN(a; a + 1) (d \(\in\) N*)

\(\Rightarrow\begin{cases}a⋮d\\a+1⋮d\end{cases}\) \(\Rightarrow\left(a+1\right)-a⋮d\)

\(\Rightarrow1⋮d\)

Mà d \(\in\) N* => d = 1

=> ƯCLN(a; a + 1) = 1

=> C là phân số tối giản (đpcm)

b) Ta thấy: m.(m + 1).(m + 2) là tích 3 số nguyên liên tiếp nên\(m\left(m+1\right)\left(m+2\right)⋮3\)

Mà \(5⋮̸3\)\(6⋮3\)

\(\Rightarrow\begin{cases}\left(m+2\right).m.\left(m+1\right)+5⋮̸3\\m\left(m+1\right)\left(m+2\right)+6⋮3\end{cases}\)

Như vậy, đến khi tối giản, phân số C vẫn có tử \(⋮3;\ne2;5\) nên phân số C viết được dưới dạng số thập phân vô hạn tuần hoàn.