Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) ta có : \(\left\{{}\begin{matrix}v_0+a\left(3-\frac{1}{2}\right)=8\\v_0+a\left(6-\frac{1}{2}\right)=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}v_0+\frac{5}{2}a=8\\v_0+\frac{11}{2}a=2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}-3a=6\\v_0+\frac{5}{2}a=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\left(m/s^2\right)\\v_0=13m/s\end{matrix}\right.\)
=> Chọn D.
Bài1:
\(S_1=v_0.2-\frac{1}{2}.a2^2=20\)
=> \(2v_0-2a=60\)(1)
\(v^2-v_0^2=2as\Rightarrow0^2-v_0^2=2a.20\Rightarrow v_0=\sqrt{40a}\)(2)
Từ (1) và (2) => \(2.\sqrt{40a}-2a=60\)
=> \(2\left(\sqrt{40a}-a\right)=60\)
<=> \(\sqrt{40a}-a=30\)
<=> \(\sqrt{40a}=30+a\Leftrightarrow40a=a^2+60a+900\)
=> \(a^2+20a+900=0\) (pt vô nghiệm)
a)
Chọn chiều (+) hướng lên. Gốc thời gian lúc bắt đầu ném
\(y=v_0t+\frac{gt2}{2}=20t-5t^2\) (1)
\(v=v_0+gt=20-10t\) (2)
Tại điểm cao nhất v=0
Từ (2) \(\Rightarrow\) t=2(s) thay vào (1)
yM = 20(m)
b)
Khi chạm đất y=0 từ (1)\(\Rightarrow\) t=0 và t=4 (s)
Thay t = 4 (s) vào (2) \(v'=-20m\text{/}s\)
(Dấu trừ (-) vận tốc ngược với chiều dương.)
\(\overrightarrow{F_{ht}}=m.\overrightarrow{a_{ht}}\Rightarrow F_{ht}=m.a_{ht}\)
\(\overrightarrow{F_{msn}}=\mu.\overrightarrow{N}\Rightarrow F_{msn}=\mu mg\)
Có \(F_{ht}\le F_{msn}\Rightarrow m.a_{ht}\le\mu mg\)
\(\Leftrightarrow\omega^2.R\le\pi^2.\mu\)
\(\Leftrightarrow\pi^2.0,2\le\pi^2.\mu\Rightarrow\mu\ge0,2\)
Vậy để vât ko bị trượt thì \(\mu\ge0,2\)
giải
Công của trọng lực thực hiện từ lúc vật lên dốc đến lúc dừng lại trên dốc bằng: Ap=mgh
Với h là hiệu độ cao từ vị trí đầu đến vị trí cuối, tính theo hình ta có:
Câu 2: Một người kéo một thùng nước có khối lượng 15kg từ giếng sâu h=8m lên, chuyển động nhanh dần đều trong 4s. lấy \(g=10m/s^2\) Tính công và công suất của người đó.
_______________________________________________
\(h=\frac{1}{2}at^2\)
\(8=\frac{1}{2}a.4^2\)
\(a=1m/s\)
\(F-P=ma\)
\(F=ma+P=15.1+15.10=165N\)
\(A=Fs=165.8=20,625J\)
\(P=\frac{A}{t}=\frac{20,625}{4}=5,15625W\)
Vậy ............
Câu 1
\(p=\sqrt{p_1^2+P_2^2}=\sqrt{\left(1.3\right)^2+\left(4.1\right)^2}=5\)
Câu 2
\(m=15\left(kg\right)\)
\(h=S=8m\)
\(t=4s\)
\(g=10\left(\frac{m}{s^2}\right)\)
a. Tính A = ?
Quãng đường mà thùng nước đi được :
\(S=\frac{1}{2}at^2\rightarrow a=\frac{2S}{t^2}=\frac{2.8}{4^2}=1\left(\frac{m}{s^2}\right)\)
Theo định luật II Niuton ta có : vectoP + vectoF = m.vecto a
\(\rightarrow F=P+ma\)
\(\rightarrow F=mg+ma\)
\(\rightarrow F=15.10+15,1=165\left(N\right)\)
- Công của lực kéo tính theo công thức : \(A=F.S\)
\(\rightarrow A=F.S\)
\(\rightarrow A=165.8=1320\left(J\right)\)
b . Tính: P = ?
- Công suất của người ấy tính theo công thức : \(P=\frac{A}{t}\)
\(\rightarrow P=\frac{1320}{4}=330\left(W\right)\)
Tóm tắt:
\(m=4kg\)
\(t=2,5s\)
____________________________
\(\Delta p=?kg.m/s\)
Giải:
Rơi tự do ko vận tốc đầu nên v1=0
Vận tốc ở tg 2s:
\(v_2=g.t=10.2,5=25\left(m/s\right)\)
Độ biến thiên động lượng của vật:
\(\Delta p=p_2-p_1=m.\left(v_2-v_1\right)=4.\left(25-0\right)=100\left(kg.m/s\right)\)
Vậy ...
chọn hệ trục xOy như hình vẽ ta có
các lực tác dụng lên vật là: \(\overrightarrow{Fms},\overrightarrow{F},\overrightarrow{P},\overrightarrow{N}\)
theo định luật 2 Newton ta có
\(\overrightarrow{F}+\overrightarrow{Fms}+\overrightarrow{P}+\overrightarrow{N}=\overrightarrow{a}.m\left(1\right)\)
chiếu phương trình 1 lên trục Oy ta có
-P + N=0
\(\Leftrightarrow\)P=N\(\Rightarrow\)Fms=\(\mu.N=\mu.mg\)
chiếu pt 1 lên trục Ox ta có
F-Fms=am
\(\Rightarrow\)F=am-Fms=a.m-\(\mu mg\)=1,25.10-0,3.4.10=0,5(N)
Vậy ..........
O x y P N Fms F