Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 3 chữ số mà có chữ số hàng chục bằng chữ số hàng đơn vị là abb(0<1;b<=9)
ta có tổng các chữ số của nó =7 nên: a+2b=7=> a=7-2b(1)
Ta có: abb= a.100+b.10 +b Thay a= 7-2b vào ta có
abb= (7-2a).100+b.10+b
=700-200b+11b
=700-189b
Vì 700⋮⋮7 và 189b⋮⋮7 nên 700-189b ⋮⋮7
vậy abb⋮⋮7
Vậy số có 3 chữ số có tổng các chữ số =7 và có chữ số hàng chục = chữ số hàng đơn vị thì số đó chia hết cho 7
Gọi số có 3 chữ số mà có chữ số hàng chục bằng chữ số hàng đơn vị là abb(0<1;b<=9)
ta có tổng các chữ số của nó =7 nên: a+2b=7=> a=7-2b(1)
Ta có: abb= a.100+b.10 +b Thay a= 7-2b vào
ta có abb= (7-2a).100+b.10+b
=700-200b+11b
=700-189b
Vì 700 ⋮ 7 và 189b ⋮ 7 nên 700-189b ⋮ 7
vậy abb ⋮ 7
Vậy số có 3 chữ số có tổng các chữ số =7 và có chữ số hàng chục = chữ số hàng đơn vị thì số đó chia hết cho 7
Gọi số cần tìm là abc (a,b,c\(\in\)N;0\(\le a,b,c\le9\);a=b)
Ta có: abc chia hết cho 12
=>100a+10b+c chia hết cho 12
=>100a +10a+c chia hết cho 12 (do a=b)
=>110a+c chia hết cho 12
=>110a+c-108a chia hết cho 12 (do 108a chia hết cho 12)
=>2a+c chia hết cho 12
=>a+b+c chia hết cho 12 (đpcm) (do a=b)
Gọi số có 3 chữ số mà chữ số hàng chục bằng chữ số hàng đơn vị là \(\overline{abb}\) (a khác 0; a;b <10 )
Vì tổng các chữ só bằng 7 => a + 2b = 7 => a = 7 -2b
Ta có: \(\overline{abb}\) = a.100 + b.10 + b
Thay a= 7- 2b, ta có :
\(\overline{abb}\) = (7-2b) . 100 + b.10 +b
= 700 - 200b + b.10 + b
= 700 - b.(200-10-1 )
= 700 - b.189
VÌ 700 \(⋮\) 7 và b.189 \(⋮\) 7
Vậy số đó chia hết cho 7 khi và chỉ khi chữ số hàng chục bằng chữ số hàng đơn vị
Chúc em học tốt !!!