Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM và ΔBNM có
BA=BN
góc ABM=góc NBM
BM chung
=>ΔBAM=ΔBNM
b: ΔBAN cân tại B
mà BI là phân giác
nên I là trung điểm của AN
c: góc NMC+góc AMN=180 độ
góc AMN+góc ABC=180 độ
=>góc NMC=góc ABC
a: Xét ΔBAM và ΔBNM có
BA=BN
\(\widehat{ABM}=\widehat{NBM}\)
BM chung
Do đó: ΔBAM=ΔBNM
b: Ta có: ΔBAM=ΔBNM
=>MA=MN
=>M nằm trên đường trung trực của AN(1)
ta có: BA=BN
=>B nằm trên đường trung trực của AN(2)
Từ (1) và (2) suy ra BM là đường trung trực của AN
=>BM\(\perp\)AN tại H và H là trung điểm của AN
vì H là trung điểm của AN
nên HA=HN
c: Ta có: CK\(\perp\)BM
HN\(\perp\)BM
Do đó: CK//HN
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔBAC vuông tại A
b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
\(\widehat{ABM}=\widehat{NBM}\)
Do đó: ΔBAM=ΔBNM
Suy ra: MA=MN
Hình tự vẽ
a) ΔABC vuông tại A.
Ta có: AB2 + BC2 = 62 + 82 = 100 (cm)
BC2 = 102 = 100 (cm)
Vì AB2 + BC2 = BC2 ( = 100 cm)
Nên ΔABC vuông tại A.
b) MA = MN.
Xét hai tam giác vuông ABM và NBM có:
BM: cạnh chung
∠ABM = ∠NBM (BM là phân giác của ∠ABC)
Do đó:ΔABM = ΔNBM (cạnh huyền - góc nhọn)
⇒ MA = MN (hai cạnh tương ứng)
c) ΔAMP = ΔNMC. MP > MN.
Xét hai tam giác vuông AMP và NMC có:
AM = MN (câu b)
∠AMP = ∠NMC (hai góc đối đỉnh)
Do đó: ΔAMP = ΔNMC (cạnh góc vuông - góc nhọn kề)
⇒ PM = MC (hai cạnh tương ứng) (1)
Xét ΔNMC vuông tại N có: MC > MN (định lí) (2)
Từ (1) và (2) suy ra: MP > MN
xet tam giac bam va tam giac bcm co
bm la canh chung
goc abm=goc cbm ( vi bm la tia phan giac cua goc abc)
ba=bc
=> tam giac bam= tam giac bcm ( c-g-c)
ĐÚNG nhé
GT | ABC là tam giác , BA = BC , góc ABM = góc CBM
KL | tam giác BAM = tam giác BCM
Xét \(\Delta BAM\) và \(\Delta BCM\) có:
BM là cạnh chung
Góc ABM = Góc MBC (gt)
BA = BC (gt)
=> \(\Delta BAM=\Delta BCM\left(c-g-c\right)\)