K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMND và ΔEND có 

NM=NE(gt)

\(\widehat{MND}=\widehat{END}\)(ND là tia phân giác của \(\widehat{MNE}\))

ND chung

Do đó: ΔMND=ΔEND(c-g-c)

Suy ra: \(\widehat{NMD}=\widehat{NED}\)(hai góc tương ứng)

mà \(\widehat{NMD}=90^0\)(gt)

nên \(\widehat{NED}=90^0\)

hay DE\(\perp\)NP

b) Ta có: ΔNMD=ΔNED(cmt)

nên DM=DE(hai cạnh tương ứng)

Ta có: NM=NE(cmt)

nên N nằm trên đường trung trực của ME(1)

Ta có: DM=DE(cmt)

nên D nằm trên đường trung trực của ME(2)

Từ (1) và (2) suy ra ND là đường trung trực của ME

thế còn câu d ạ owo, 2 câu kia e biết rồi ạ owọ"

a) Xét ΔEAM và ΔNAD có 

AE=AN(gt)

\(\widehat{EAM}=\widehat{NAD}\)(hai góc đối đỉnh)

AM=AD(A là trung điểm của MD)

Do đó: ΔEAM=ΔNAD(c-g-c)

Suy ra: ME=ND(Hai cạnh tương ứng)

4 tháng 5 2018

a

xét tam giác MND & tam giác END

có ND chug

góc M=gócE(=90dộ)

góc MND=gócDNE

=>  tam giác MND = tam giác END (g.c.g)

=> NE=NM(2 cạnh tươg ứg)

Từ cm câu a ta có NE=NM(2 cạnh tươg ứg) =>NE&NM cách đều ME =>  ND là đường trung trực của ME(t/c đg trug trực)

dựa vào địh lí pytago đảo

=> ND + NE = DE 

=>10^2+NE^2=36^2

=>NE^2=36^2-10^2=(TỰ TÍNH MIK TÍNH KO RA)

a: Xét ΔNME có 

ND là đường cao

ND là đường phân giác

Do đó: ΔNME cân tại N

b: Xét ΔNMD và ΔNED có

NM=NE

\(\widehat{MND}=\widehat{END}\)

ND chung

DO đó: ΔNMD=ΔNED

Suy ra: DM=DE

mà NM=NE

nên ND là đường trung trực của ME

21 tháng 2 2021

hình bn  tự kẻ nha ^^

a, vì N là phân giác \(\widehat{MNP}\)\(\left(gt\right)\Rightarrow\)\(\widehat{END}\)\(=\)\(\widehat{MND}\)

Xét tam giác MND và tam giác END có;

\(\widehat{M}\)\(=\)\(\widehat{E}\)\(=\)\(90\)độ ( gt)

CẠNH ND CHUNG

\(\widehat{MND}\)\(=\)\(\widehat{END}\)( CMT)

\(\Rightarrow\)TAM GIÁC MND \(=\)TAM GIÁC END (G-C-G)

21 tháng 2 2021

a) Xét tam giác MND vuông tại M và tam giác END vuông tại E có :

                   ND : cạnh chung

                   MND=END ( ND phân giác MNE)

Vậy tam giác MND = tam giác END ( ch-gn)

b) Vì tam giác MND = tam giác END (cmt)

=>MN=EN(cctứ); MD=ED(cctứ)

Vì MN=EN(cmt)=> N thuộc đường trung trực của ME (1)

Vì MD=ED(cmt)=> D thuộc đường trung trực của ME(2)

Từ (1) và (2) => ND là đường trung trực của ME

c) Xét tam giác END vuông tại E có :

            ED^2 + EN^2 = ND^2 (định lí Pytago)

           NE^2 = ND^2 - ED^2

          NE^2 = 10^2 - 6^2 = 100 - 36 = 64

   => NE = 8 (cm) 

*ko hiểu sao rảnh mà lớp 8 đi giải bài lớp 7 :))))) *

a: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

góc MND=góc END

=>ΔNMD=ΔNED

=>MN=NE

b: Xét ΔNFP có

PM,FE là đường cao

PM cắt FE tại D

=>D là trực tâm

=>ND vuông góc FP

Xét ΔNMD vuông tại M và ΔNED vuông tại Ecó

ND chung

góc MND=góc END

=>ΔNMD=ΔNED

a: Sửa đề: ΔMNP cân tại M

a: Xét ΔMDN vuông tại D và ΔMEP vuông tại E có

MN=MP

góc DMN chung

=>ΔMDN=ΔMEP

b: góc MND+góc HNP=góc MNP

góc MPE+góc HPN=góc MPN

mà góc MND=góc MPE và góc MNP=góc MPN

nên góc HPN=góc HNP

=>ΔHNP cân tại H

c: HN=HP

HP>HD

=>HN>HD