Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M là trung điểm AB
Q là trung điểm AD
suy ra MQ là đường trung bình của tam giác ABD
suy ra MQ // BD, MQ = 1/2.BD (1)
xét tam giác BCD có:
N là trung điểm BC
P là trung điểm DC
suy ra NP là đường trung bình của tam giác BCD
suy ra NP//BD, NP = 1/2.BD (2)
từ (1), (2) suy ra NP//MQ và NP = MQ
suy ra vecto NP = MQ
chứng minh tương tự trên thì ta cũng được vecto NM = PQ
Ta có M là trung điểm AB, N là trung điểm BC
\(\Rightarrow\) MN là đường trung bình tam giác ABC
\(\Rightarrow\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AC}\)
Hoàn toàn tương tự, PQ là đường trung bình tam giác ACD
\(\Rightarrow\overrightarrow{QP}=\dfrac{1}{2}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{MN}=\overrightarrow{QP}\)
a: \(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)
Ta có :M, N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác ABC=>MN //AC vàMN = 1/2 AC (1).
Cmtt ta có:QP là đường trung bình của tam giác ADC suy ra QP//AC và QP =1/2 AC (2).
Từ (1)và(2) suy ra:
MN//QP và MN = QP
=>tứ giác MNPQ là hìnhbình hành
=>vectoMN=vectoQP
Do MN là đường trung bình hình thang nên \(\overrightarrow{MN}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{DC}\right)\)
Mà \(CD=2AB\Rightarrow\overrightarrow{DC}=2\overrightarrow{AB}\Rightarrow\overrightarrow{MN}=\frac{3}{2}\overrightarrow{AB}\)
Ta có: \(\overrightarrow{MN}+\overrightarrow{BD}+\overrightarrow{CA}=\frac{3}{2}\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{CB}+\overrightarrow{BA}\)
\(=\frac{3}{2}\overrightarrow{AB}-\overrightarrow{DC}-\overrightarrow{AB}=\frac{3}{2}\overrightarrow{AB}-2\overrightarrow{AB}-\overrightarrow{AB}=-\frac{3}{2}\overrightarrow{AB}\)
\(\Rightarrow\left|\overrightarrow{MN}+\overrightarrow{BD}+\overrightarrow{CA}\right|=\left|-\frac{3}{2}\overrightarrow{AB}\right|=\frac{3}{2}AB=\frac{3a}{2}\)
\(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{BM}+\overrightarrow{MN}+\overrightarrow{ND}\)
\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{BM}\right)+\left(\overrightarrow{NC}+\overrightarrow{ND}\right)=2\overrightarrow{MN}\)