Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n < m => n = (2k + 1)2, m = (2k + 3)2
Ta có: mn - m - n + 1 = (mn - m) - (n - 1)
= (n - 1)(m - 1) = [(2k + 1)2 - 1][(2k + 3)2 - 1]
= 2k(2k + 2)(2k + 2)(2k + 4)
= 16.k(k + 1)2 (k + 2)
* Chứng minh chia hết cho 64
Với k chẵn thì k và (k + 2) chia hết cho 2
=> 16.k(k + 1)2 (k + 2) chia hết cho 64
Với k lẻ thì (k + 1) chia hết cho 2
=> 16.k(k + 1)2 (k + 2) chia hết cho 64
Vậy 16.k(k + 1)2 (k + 2) chia hết cho 64 (1)
* Chứng minh chia hết cho 3
Ta có k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 3 (2)
Từ (1) và (2) kết hợp với việc 64, 3 là hai số nguyên tố cùng nhau thì ta có 16.k(k + 1)2 (k + 2) chia hết 64.3 = 192
Hay mn - m - n + 1 chia hết cho 192
ĐỀ SAI NHÉ,PHẢI LÀ (M,N)=1 THÔI
Dễ dàng CM được tính chất sau: 1 số chính phương chia hết cho số nguyên tố p thì chia hết cho \(p^2\)
Quay lại với bài này:
Đặt: \(\hept{\begin{cases}m=p_1.p_2...p_i\\n=q_1.q_2...q_j\end{cases}},p_k,q_l\)là các số nguyên tố và do (m,n)=1 => \(p_k\)bất kỳ khác \(q_l\)
Áp dụng trực tiếp tính chất trên ta => m,n là số chính phương
Nếu m=n ta có đpcm
Xét m \(\ne\)n ta đặt \(\hept{\begin{cases}m+n=2x\\m-n=2y\end{cases}\left(x;y\inℤ;x>0;y\ne0\right)}\)khi đó ta có: \(\hept{\begin{cases}m=x+y\\n=x-y\end{cases}\left(m,n>0\right)\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}\Rightarrow}x=\left|y\right|}\)
Do đó \(n^2-1⋮\left|m^2-n^2+1\right|\Rightarrow-\left(m^2-n^2-1\right)+m^2⋮\left|m^2-n^2+1\right|\Rightarrow m^2=k\left(m^2-n^2+1\right)\left(1\right)\left(k\inℤ\right)\)
Thay m=x+y; n=x-y ta có: (x+y)2=k(4xy+1)
<=> x2-2(2x-1)xy+y2-k=0 (*)
Phương trình (*) có 1 nghiệm là x thuộc Z nên có 1 nghiệm nữa là x1. Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x+x_1=2\left(2k-1\right)\\xx_1=y^2-k\end{cases}\Rightarrow x;x_1\inℤ}\)
Nếu x1>0 => (x;y) là cặp nghiệm thỏa mãn (*)
=> x1>|y| => y2-k=xx1 > |y|2=y2 => k<0 => x1+x2=2(2k-1)<0 (mâu thuẫn)
Nếu x1<0 thì xx1=y2-k<0 => k>y2 => k>0 => 4xy+1>0 => y>0 ta có:
k=x12-2(2k-1)x1y+y2=x12+2(2k-1)|x1|y+y2> 2(2k-1) |x1|y >= 2(2k-1)>k (mâu thuẫn)
vậy x1=0 khi đó k=y2 và \(m^2-n^2+1=\left(\frac{m}{y}\right)^2\)nên |m2-n2+1| là số chính phương
nếu m=n thì ta có đpcm
xét m khác n ta đặt \(\hept{\begin{cases}m+n=2x\\m-n=2y\end{cases}\left(x,y\in Z,x>0;y\ne0\right)}\)khi đó ta có \(\hept{\begin{cases}x+y=m\\x-y=n\end{cases}}\)do đó m,n>0
\(\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}\Rightarrow x>\left|y\right|}\)
do \(n^2-1⋮\left|m^2-n+1\right|\Rightarrow-\left(m^2-n^2-1\right)+m^2⋮\left|m^2-n^2+1\right|\Rightarrow m^2⋮m^2-n^2+1\)
\(\Rightarrow m^2=k\left(m^2-n^2+1\right)\left(1\right)\left(k\inℤ\right)\)
thay m=x+y; n=x-y ta có \(\left(x+y\right)^2=k\left(4xy+1\right)\Leftrightarrow x^2-2\left(2k-1\right)xy+y^2-k=0\)(*)
phương trình (*) có 1 nghiệm của x thuộc Z nên có 1 nghiệm nữa là x1 theo hệ thức Vi-et ta có
\(\hept{\begin{cases}x+x_1=2\left(2k-1\right)\\xx_1=y^2-k\end{cases}}\Rightarrow x_1\inℤ\)
nếu x1>0 thì (x1;y) là một cặp nghiệm thỏa mãn (*)
=> \(x_1>\left|y\right|\Rightarrow y^2-k=xx_1>\left|y\right|^2=y^2\Rightarrow k< 0\Rightarrow x_1+x=2\left(2k-1\right)< 0\)mâu thuẫn
nếu x1<0 thì \(xx_1=y^2-k< 0\Rightarrow k>y^2\Rightarrow k>0\Rightarrow4xy+1>0\Rightarrow y>0\)ta có
\(k=x_1^2-2\left(2k-1\right)x_1y+y^2=x_1^2+2\left(2k-1\right)\left|x_1\right|y\ge2\left(2k-1\right)>k\)mâu thuẫn
vậy x1=0 khi đó k=y2 và \(m^2-n^2+1=\frac{m^2}{k}=\left(\frac{m}{y}\right)^2\)nên m2-n2+1 là số chính phương