K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=\left(\dfrac{-\left(\sqrt{x}+2\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{x-4}\right)\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)

\(=\dfrac{-x-4\sqrt{x}-4+x-4\sqrt{x}+4-4x}{x-4}\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)

\(=\dfrac{-4x-8\sqrt{x}}{x-4}\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)

\(=\dfrac{4\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(x-4\right)\left(\sqrt{x}+3\right)}=\dfrac{4\sqrt{x}}{\sqrt{x}+3}\)

b: \(x=\sqrt{5}-1-\left(\sqrt{5}-2\right)=\sqrt{5}-1-\sqrt{5}+2=1\)

Thay x=1 vào M, ta được:

\(M=\dfrac{4}{1+3}=\dfrac{4}{4}=1\)

c: Để M là số nguyên thì \(4\sqrt{x}-12+12⋮\sqrt{x}+3\)

\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;3;9\right\}\)

hay \(x\in\left\{0;9;81\right\}\)

6 tháng 11 2021

a, \(\Rightarrow M=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

 \(\Rightarrow M=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Rightarrow M=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Rightarrow M=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b, \(x=3+2\sqrt{2}\Rightarrow M=\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}=\dfrac{\sqrt{2+2\sqrt{2}.1+1}-2}{\sqrt{2+2\sqrt{2}.1+1}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2-2\sqrt{2}+1}{2-1}=3-2\sqrt{2}\)

c, \(M>0\Rightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\Rightarrow x>4\)

a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:

\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)

c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)

hay \(x\in\left\{16;25;64\right\}\)

a) Ta có: \(M=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{-\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-3}{\sqrt{x}-2}\)

a: \(M=7\sqrt{3}+7\sqrt{2}-7\sqrt{3}-6\sqrt{2}=\sqrt{2}\)

\(N=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(x-4\right)}=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b: Để N=M2 thì \(3\sqrt{x}=2\sqrt{x}+4\)

hay x=16

23 tháng 6 2021

a) \(P=\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}=\dfrac{4x}{\sqrt{x}-3}\)

\(\left(x\ge0;x\ne4;9\right)\)

b)\(P=-1\Leftrightarrow4x+\sqrt{x}-3=0\Leftrightarrow\sqrt{x}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)

c) bpt đưa về dạng \(4mx>x+1\Leftrightarrow\left(4x-1\right)x>1\)

Nếu \(4m-1\le0\) thì tập nghiệm không thể chứa mọi giá trị \(x>9\); Nếu \(4m-1>0\) thì tập nghiệm bpt là \(x>\dfrac{1}{4m-1}\). Do đó bpt tm mọi \(x>9\Leftrightarrow9\ge\dfrac{1}{4m-1}\) và \(4m-1>0\). ta có \(m\ge\dfrac{5}{18}\)

Câu I.Cho hai biểu thức \(A=\dfrac{2\sqrt{x}+1}{x^2}\) và \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\times\dfrac{\sqrt{x}-1}{x^2}\) với \(x\ge0,x\ne4.\)1) Tính giá trị của A tại x = 9.2) Rút gọn B.3) Tìm x để B < A.Câu II.1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:Hai đội công nhân A và B cùng nhau làm một công việc thì hoàn thành trong 16 ngày. Nếu đội A làm trong 4 ngày rồi nghỉ, và tiếp...
Đọc tiếp

undefined

Câu I.

Cho hai biểu thức \(A=\dfrac{2\sqrt{x}+1}{x^2}\) và \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\times\dfrac{\sqrt{x}-1}{x^2}\) với \(x\ge0,x\ne4.\)

1) Tính giá trị của A tại x = 9.

2) Rút gọn B.

3) Tìm x để B < A.

Câu II.

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai đội công nhân A và B cùng nhau làm một công việc thì hoàn thành trong 16 ngày. Nếu đội A làm trong 4 ngày rồi nghỉ, và tiếp theo đội B làm 3 ngày thì cả hai hoàn thành được \(\dfrac{11}{48}\) công việc. Hỏi nếu mỗi đội làm riêng thì làm xong công việc đó trong mấy ngày?

2) Một hình trụ có chiều cao bằng 2 lần bán kính đáy. Tính diện tích toàn phần của hình trụ đó biết thể tích của hình trụ là 128π (cm3).

Câu III. 

1) Giải hệ phương trình: \(\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2x-4y+\dfrac{3}{2x+3y}=3\end{matrix}\right.\)

2) Cho phương trình \(x^2-\left(m-3\right)x+2m-11=0\) ( với m là tham số)

a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.

b) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 là độ dài hai cạnh của một tam giác vuông với cạnh huyền bằng 4.

Câu IV.

Cho tam giác nhọn ABC nội tiếp đường tròn tâm (O) và AC > BC. Gọi AD, BE, CF là ba đường cao, H là trực tâm của tam giác ABC. Gọi M, N lần lượt là trung điểm của AD, AC. Tia CO cắt DE tại P.

1) Chứng minh rằng tứ giác ABDE nội tiếp và △ABD đồng dạng với △CON.

2) Chứng minh rằng CP⊥DE và \(\widehat{FCP}=\widehat{ABC}-\widehat{CAB}.\)

3) Chứng minh rằng \(\widehat{MNF}=\widehat{FCP}\) và tứ giác FMPD nội tiếp.

Câu V.

Giải phương trình: \(\left(\sqrt{x+1}-\sqrt{x-2}\right).\left(\sqrt{4-x}+1\right)=2\).

 

15
12 tháng 4 2021

Bài 1. ĐKXĐ thêm x ≠ 1 nữa ạ

1) Với x = 9 tmđk, thay vào A ta được : \(A=\dfrac{2\sqrt{9}+1}{9^2}=\dfrac{7}{81}\)

2) \(B=\left[\dfrac{4x}{\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{x^2}=\dfrac{4x-1}{x^2}\)

3) Để B < A thì \(\dfrac{4x-1}{x^2}< \dfrac{2\sqrt{x}+1}{x^2}\)

<=> \(\dfrac{4x-1}{x^2}-\dfrac{2\sqrt{x}+1}{x^2}< 0\)

<=> \(\dfrac{4x-2\sqrt{x}-2}{x^2}< 0\)

Vì x2 > 0 ∀ x

=> \(4x-2\sqrt{x}-2< 0\)

<=> \(2x-\sqrt{x}-1< 0\)

<=> \(\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)< 0\)

Vì \(2\sqrt{x}+1\ge1>0\forall x\ge0\)

=> \(\sqrt{x}-1< 0\)<=> x < 1

Vậy với x < 1 thì B < A

12 tháng 4 2021

Câu 3 : 

\(\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2x-4y+\dfrac{3}{2x+3y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2\left(x-2y\right)+\dfrac{3}{2x+3y}=3\end{matrix}\right.\)

Đặt \(x-2y=t;\dfrac{1}{2x+3y}=z\)

Hệ phương trình tương đương 

\(\left\{{}\begin{matrix}t+z=2\\2t+3z=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=2-z\left(1\right)\\2t+3z=3\left(2\right)\end{matrix}\right.\)

Thế (1) vào (2) ta được : \(2\left(2-z\right)+3z=3\Leftrightarrow4-2z+3z=3\Leftrightarrow z=-1\)

\(\Rightarrow t=2-z=3\)

hay \(\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\left(3\right)\\\dfrac{1}{2x+3y}=-1\left(4\right)\end{matrix}\right.\)

Thế (3) vào (4) ta được : \(\dfrac{1}{2\left(3+2y\right)+3y}=-1\Leftrightarrow\dfrac{1}{6+7y}=-1\Rightarrow-6-7y=1\Leftrightarrow-7y=7\Leftrightarrow y=-1\)

\(\Rightarrow x=3-2=1\)

Vậy \(\left(x;y\right)=\left(1;-1\right)\)

a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)

=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)

=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)

=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)

Để BPT luôn đúng thì m<-0,3

14 tháng 8 2023

\(a,A=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\left(dk:x\ge0,x\ne4\right)\\ =\left(\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}\right)\\ =\dfrac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{x-4+10-x}\)

\(=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\sqrt{x}-2}.\dfrac{1}{6}\\ =\dfrac{-6}{\left(\sqrt{x}-2\right).6}\\ =-\dfrac{1}{\sqrt{x}-2}\)
\(b,A>0\Leftrightarrow-\dfrac{1}{\sqrt{x}-2}>0\Leftrightarrow\sqrt{x}-2< 0\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với \(dk:x\ge0,x\ne4\), ta kết luận \(0\le x< 4\)

 

14 tháng 8 2023

Mình cần gấp nhớ đừng làm tắt nhé