K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2020

Gọi (2n+2,6n+5) là d. Điều kiện : d\(\in\)N*.

Vì (2n+2,6n+5) là d

\(\Rightarrow\)\(\hept{\begin{cases}2n+2⋮d\\6n+5⋮d\end{cases}}\)

\(\Rightarrow\)(2n+2)-(6n+5)\(⋮\)d

\(\Rightarrow\)(6n+6)-(6n+5)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d=1

\(\Rightarrow\)2n+2 và 6n+5 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{2n+2}{6n+5}\)là phân số tối giản

Vậy \(\frac{2n+2}{6n+5}\)là phân số tối giản.

Gọi d là ƯCLN của 2n + 2 và 6n + 5 ( d ∈ N*)

Ta có :  2n + 2 chia hết cho d => 3.(2n + 2) chia hết cho d => 6n + 6 chia hết cho d

 =>6n + 5 chia hết cho d

=> 6n + 6 - ( 6n + 5) chia hết cho d

=> 6n + 6 - 6n - 5 chia hết cho d

=> 1 chia hết cho d => d ∈ Ư(1)

Mà d ∈ N* => d = 1

=> ƯCLN(2n+2;6n+5) = 1

Vậy : 2n+2/6n+5 là phần số tối giản

22 tháng 2 2022

\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

3n-11-12-23-34-46-612-12
nloại01loạiloạiloạiloại-1loạiloạiloạiloại

 

c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

n-31-13-39-9
n426012-6

 

27 tháng 2 2023

Có đúng không

 

19 tháng 7 2015

a, để B là số nguyên thì 6n+7 chia hết cho 2n+3

=> 6n+9-2 chia hết cho 2n+3

Vì 6n+9 chia hết cho 2n+3

=> 2 chia hết cho 2n+3

Mà 2n+3 lẻ

=> 2n+3 thuộc ước lẻ của 2

2n+3n
1-1
-1-2    

KL: n\(\in\){-1; -2}

\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}\)

\(=\frac{3\left(2n-1\right)+8}{2n-1}\)

\(=3+\frac{8}{2n-1}\)

Để B nguyên thì \(2n-1\inƯ\left(8\right)\)

\(\Rightarrow2n-1=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

Rồi bạn cứ thế vào . Trường Hợp ở đây là : \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)

Ta có : \(2n-1=1\Rightarrow n=1\)

\(2n-1=-1\Rightarrow n=0\)

\(2n-1=2\Rightarrow n=1,5\)

\(2n-1=-2\Rightarrow n=-0,5\)

\(2n-1=4\Rightarrow n=2,5\)

\(2n-1=-4\Rightarrow n=-1,5\)

\(2n-1=8\Rightarrow n=4,5\)

\(2n-1=-8\Rightarrow n=-3,5\)

5 tháng 8 2016

Để B nguyên thì 6n + 5 chia hết cho 2n - 1

=> 6n - 3 + 8 chia hết cho 2n - 1

=> 3.(2n - 1) + 8 chia hết cho 2n - 1

Do 3.(2n - 1) chia hết cho 2n - 1 => 8 chia hết cho 2n - 1

Mà 2n - 1 là số lẻ => \(2n-1\in\left\{1;-1\right\}\)

=> \(2n\in\left\{2;0\right\}\)

=> \(n\in\left\{1;0\right\}\)

13 tháng 5 2016

Ta có: \(\frac{6n+5}{2n-1}=\frac{\left(6n-3\right)+8}{2n-1}=\frac{6n-3}{2n-1}+\frac{8}{2n-1}=2+\frac{8}{2n-1}\)

Để A có giá trị nguyên thì 8/2n-1 cũng phải là số nguyên

\(\Rightarrow2n-1\in\text{Ư}\left(8\right)\)

\(\Rightarrow\) \(2n-1\in\) {-8;-4;-2;-1;1;2;4;8}

Mà 2n - 1 lẻ nên 2n - 1 \(\in\) {-1;1}

\(\Rightarrow\) n \(\in\) {0;1}

13 tháng 5 2016

Bạn có thể giải thích chặt chẽ hơn dc không!

13 tháng 5 2016

Bài này hình như bạn vừa ra trong online math đúng ko

13 tháng 5 2016

Đúng vậy!