K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2022

Nó chỉ đúng khi A, B nằm trong cùng một mặt phẳng góc phần tư thứ nhất hoặc ba thôi.

 

Chẳng hạn ở hình này, dễ thấy rằng MN là đường trung bình của hình thang ABDC(AC//BD) \(\Rightarrow MN=\frac{AC+BD}{2}\)

Lại có \(MN=y_M;AC=y_A;BD=y_B\)(vì trong trường hợp này tung độ của các điểm đều dương)

\(\Rightarrow y_M=\frac{y_A+y_B}{2}\)(đpcm thứ 1)

Tương tự, ta cũng có \(x_M=\frac{x_1+x_2}{2}\)(MP là đường trung bình của hình thang ABFE)

Nếu A, B nằm trong cùng một mặt phẳng góc phần tư thứ hai hoặc bốn thì:

Nếu như này thì cũng như trường hợp trên, ta chứng minh \(x_M=\frac{x_A+x_B}{2}\)một cách dễ dàng (MP là đường trung bình của hình thang ABFE(AE//BF))

Nhưng còn về y thì nó hơi khác một chút:

Dễ thấy \(MN=\frac{AC+BD}{2}\)

Vì tất cả các tung độ trong trường hợp này đều âm nên ta có \(-y_M=\frac{-y_A-y_B}{2}\)rốt cuộc vẫn có \(y_M=\frac{y_A+y_B}{2}\)

Còn trường hợp 2 điểm A, B nằm trên 2 góc phần tư khác nhau thì mình đang nghĩ.

13 tháng 4 2022

Ý bạn là công thức \(x_M=\frac{x_A+x_B}{2}\)và \(y_M=\frac{y_A+y_B}{2}\)nếu M là trung điểm của AB đúng không?

Vì A là giao điểm của (d) với trục Oy nên x=0

=>y=-3

20 tháng 5 2022

`A` là giao điểm của `(d)` và `Oy=>x=0`

    `=>y=-3`

Vậy tọa độ điểm `A` là: `(0;-3)`

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. Câu 4: (4,0 điểm)Cho đường tròn (O; R) và hai...
Đọc tiếp

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).
a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.
b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. 
Câu 4: (4,0 điểm)
Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA.
b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất.
Câu 5: (2,0 điểm) Cho a, b, c là các độ dài ba cạnh của một tam giác và thỏa hệ thức a+b+c=1. Chứng minh rằng a2+b2+c2<12.

0
18 tháng 5 2021

A B C M D(7;-2) G E AG:3x-y-13=0

Tam giác AMB vuông cân tại M có trọng tâm G => GB=GA (=GD) => G là tâm ngoại tiếp tam giác BAD => ^AGD = 2^ABD = 900

a) \(AG:3x-y-13=0\Leftrightarrow\hept{\begin{cases}x=t\\y=3t-13\end{cases}}\Rightarrow G\left(t_1;3t_1-13\right),A\left(t_2;3t_2-13\right)\)

\(\overrightarrow{DG}=\left(t_1-7;3t_1-11\right)\)\(\overrightarrow{DG}\)vuông góc với VTCP (1;3) của AG

\(\Rightarrow\left(t_1-7\right)+3\left(3t_1-11\right)=0\Leftrightarrow t_1=4\Rightarrow G\left(4;-1\right)\)

\(\Rightarrow\overrightarrow{GA}=\left(t_2-4;3t_2-12\right)\)

Ta có; \(\left(t_2-4\right)^2+\left(3t_2-12\right)^2=GA^2=d^2\left(D,AG\right)=10\)

\(\Leftrightarrow\orbr{\begin{cases}t_2=5\\t_2=3\end{cases}}\Rightarrow\orbr{\begin{cases}A\left(5;2\right)\\A\left(3;-4\right)\end{cases}}\). Mà hoành độ của A nhỏ hơn A nên \(A\left(3;-4\right)\).

b) E là trung điểm BM, có \(\overrightarrow{AG}=\left(1;3\right)\Rightarrow\overrightarrow{AE}=\left(\frac{3}{2};\frac{9}{2}\right)\Rightarrow E\left(\frac{9}{2};\frac{1}{2}\right)\Rightarrow\overrightarrow{ED}=\left(\frac{5}{2};-\frac{5}{2}\right)\)

\(\Rightarrow ED:\hept{\begin{cases}x=7+m\\y=-2-m\end{cases}}\Rightarrow B\left(7+m;-2-m\right)\)

\(\Rightarrow\overrightarrow{GB}=\left(3+m;-1-m\right)\)

Lại có: \(\left(3+m\right)^2+\left(1+m\right)^2=GB^2=GA^2=10\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\Rightarrow\orbr{\begin{cases}B\left(7;-2\right)\left(l\right)\\B\left(3;2\right)\end{cases}}\)

Đường thẳng AB: đi qua \(B\left(3;2\right)\),VTCP \(\overrightarrow{AB}\left(0;6\right)\)\(\Rightarrow AB:\hept{\begin{cases}x=3\\y=2+t\end{cases}}\Leftrightarrow x-3=0.\)

vẽ đồ thị: 

loading...

a: Phương trình hoành độ giao điểm là:

\(3x+7=x+3\)

=>3x-x=3-7

=>2x=-4

=>x=-2

Thay x=-2 vào y=x+3, ta được:

y=-2+3=1

Vậy: K(-2;1)

b: Sửa đề: I là trung điểm của đoạn thẳng nối bởi hai giao điểm của (d1) và (d2) với trục Oy

Tọa độ giao điểm của (d1) với trục Oy là:

\(\left\{{}\begin{matrix}x=0\\y=x+3=0+3=3\end{matrix}\right.\)

Tọa độ giao điểm của (d2) với trục Oy là:

\(\left\{{}\begin{matrix}x=0\\y=3x+7=3\cdot0+7=7\end{matrix}\right.\)

Tọa độ I là:

\(\left\{{}\begin{matrix}x=\dfrac{0+0}{2}=0\\y=\dfrac{3+7}{2}=\dfrac{10}{2}=5\end{matrix}\right.\)

Vậy: I(0;5)

Ta có: I(0;5); K(-2;1); O(0;0)

\(IK=\sqrt{\left(-2-0\right)^2+\left(1-5\right)^2}=\sqrt{2^2+4^2}=2\sqrt{5}\)

\(IO=\sqrt{\left(0-0\right)^2+\left(0-5\right)^2}=\sqrt{0^2+5^2}=5\)

\(KO=\sqrt{\left(0+2\right)^2+\left(0-1\right)^2}=\sqrt{2^2+1^2}=\sqrt{5}\)

Vì \(IK^2+KO^2=IO^2\)

nên ΔKIO vuông tại K

c: Vì ΔKIO vuông tại K

nên \(S_{IKO}=\dfrac{1}{2}\cdot IK\cdot KO=\dfrac{1}{2}\cdot2\sqrt{5}\cdot\sqrt{5}=5\)