K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.

Cho x,y>0x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.

.............................

21 tháng 11 2017

B1 : 

Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a

Tương tự b^2/c+a + c+a/4 >= b

c^2/a+b + a+b/4 >= c

=> VT + a+b+c/2 >= a+b+c

=> VT >= a+b+c/2 = VP 

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

k mk nha

1 tháng 6 2017

Câu 2 : x^+x+y^2+x = x(x+1) +y(y+1) chia cho vế trái (x+1)(y+1) ...
Bài toán dễ dàng :V

1 tháng 6 2017

Mình nhớ có học qua rùi mà dốt quá trả chữ cho thầy cô hết trơn :)

4 tháng 11 2017
Đừng bumhiacopski chủ giá
30 tháng 12 2017

Đề phải cho x,y,z ; a,b,c >0 chứ bạn ơi

Xét A = (a^2/x + b^2/y + c^2/z) . (x+y+z) = [(a/\(\sqrt{x}\))^2+(b/\(\sqrt{y}\))^2+(c/\(\sqrt{z}\))^2 . (\(\sqrt{x}\)2 + \(\sqrt{y}\)2 + \(\sqrt{z}\)2)

Áp dụng bđt bunhiacopxki ta có : 

A >= (a/\(\sqrt{x}\).\(\sqrt{x}\)+b/\(\sqrt{y}\).\(\sqrt{y}\)+c/\(\sqrt{z}\).\(\sqrt{z}\))^2 = (a+b+c)^2

=> a^2/x + b^2/y + c^2/z >= (a+b+c)^2/x+y+z

=> ĐPCM

k mk nha

30 tháng 12 2017

Nhầm chỗ \(\sqrt{z}\)2 nha . đó là \(\sqrt{z}\)2

k mk nha

21 tháng 8 2017

a/ có \(a^2+b^2+c^2+\frac{3}{4}\ge-\left(a+b+c\right)\)

\(\Leftrightarrow a^2+a+\frac{1}{4}+b^2+b+\frac{1}{4}+c^2+c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng với mọi a,b,c)

b/ \(2a^2+2b^2+8-2ab+4\left(a+b\right)\ge0\)

\(\Leftrightarrow a^2+4a+4+b^2+4b+4+a^2+2ab+b^2\ge0\)

\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(a+b\right)^2\ge0\)(luôn đúng)

bài 2 áp dụng bất đẳng thức cô si cho 3 số dương ta có 

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)

bài 3: giả sử \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\ge6\)

áp dụng bất đẳng thức cô si cho 2 số dương ta có

\(\frac{x}{y}+\frac{y}{x}\ge2\)cmtt \(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\ge6\)

áp dụng bất đăng thức trên ta đc

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

bái 4: áp dụng bất đẳng thức cô si cho từng cái, nhân vế theo vế là đc nhé bn