Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(0< \frac{a}{b}< 1\) nên ta có thể giả sử a và b là 2 số nguyên dương
Do đó ta có :
\(0< a< b\Rightarrow b-a>0\)
Ta có :
\(y-x=\frac{\left(b-a\right)c}{\left(b+c\right)b}>0\)
=> y > x ( đpcm)
Các bạn xem bài làm của mình , còn thiếu sót gì mong các bạn bỏ qua.
Sgk
a) ĐKXĐ: \(x\ne-1\)
Ta có:
\(\frac{x+1}{8}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=8^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=8\\x+1=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-9\end{cases}\left(TMĐKXĐ\right)}\)
\(\)
a, \(\frac{x+1}{8}=\frac{8}{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=8.8\)
\(\Leftrightarrow\left(x+1\right)=\pm8\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=8\\x+1=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-9\end{cases}}}\)
b, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\left(2x+3y=186\right)\)
Theo đề bài ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3.5}=\frac{y}{4.5}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5.4}=\frac{z}{7.4}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y}{90}=\frac{186}{90}=\frac{31}{15}\)
\(\Rightarrow\frac{2x}{30}=\frac{31}{15}\Rightarrow2x=62\Rightarrow x=31\)
\(\frac{3y}{60}=\frac{31}{15}\Rightarrow3y=124\Rightarrow y=\frac{124}{3}\)
Mà \(\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{\frac{124}{3}}{20}=\frac{z}{28}\Rightarrow\frac{31}{15}=\frac{z}{28}\)
Từ đây bạn tìm nốt z nha
=> \(\left(x+3\right)\left(y+7\right)=\left(y+5\right)\left(x+5\right)\)
=> \(xy+7x+3y+3\cdot7=xy+5y+5x+5\cdot5\)
=> \(xy+7x+3y+21=xy+5y+5x+25\)
=> \(xy+7x+3y+21-xy-5y-5x-25=0\)
=> \(xy+7x+3y-xy-5y-5x=-21+25\)
=> \(2x-2y=4\)
=> \(2\left(x-y\right)=4\)
=> \(x-y=4:2\)
=> \(x-y=2\)
tick cho mình nha
a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)
Tương đương : 7x - 21 = 5x + 25
7x - 5x = 25 + 21 = 46
2x = 46 suy ra : x = 46/2 = 23
Vậy x = 23
Ta có:
\(\frac{x+3}{y+5}=\frac{x+5}{y+7}\)
\(\Rightarrow\left(x+3\right)\left(y+7\right)=\left(x+5\right)\left(y+5\right)\)
\(\Rightarrow xy+7x+3y+21=xy+5x+5y+25\)
\(\Rightarrow\left(7x-5x\right)+\left(3y-5y\right)=25-21\)
\(\Rightarrow2x-2y=4\)
\(\Rightarrow2\left(x-y\right)=4\)
\(\Rightarrow x-y=2\)
Thử lại: Do \(x-y=2\Rightarrow x=y+2\) nên ta có:
\(\frac{\left(y+2\right)+3}{y+5}=\frac{\left(y+2\right)+5}{y+7}\)
\(\Rightarrow\frac{y+5}{y+5}=\frac{y+7}{y+7}\)
\(\Rightarrow1=1\) ( thoả mãn )
Vậy hiệu giữa x và y là 2