Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(B=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}=1+\frac{5}{\sqrt{x}-2}\)
Mà B nguyên nên \(\frac{5}{\sqrt{x}-2}\in Z\)hay \(\left(\sqrt{x}-2\right)\inƯ\left(5\right)\)
\(\sqrt{x}-2\) | 1 | -1 | 5 | -5 |
\(\sqrt{x}\) | 3 | 1 | 7 | -3 |
\(x\) | 9 | 1 | 49 | \(\varnothing\) |
Vậy \(x\in\left(1;9;49\right)\)
\(B=\frac{\sqrt{x}+3}{\sqrt{x}-2}\) \(ĐKXĐ:x\ne4;x\ge0\)
\(B=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}\)
\(B=1+\frac{5}{\sqrt{x}-2}\)
để \(B\in Z\)thì \(x\in Z\)
mà \(1\in Z\forall R\) nên \(\frac{5}{\sqrt{x}-2}\in Z\)
\(\Leftrightarrow\sqrt{x}-2\inƯ\left(5\right)\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{\pm1;\pm5\right\}\)
mà \(x\ge0\) nên \(\sqrt{x}-2\in\left\{1;5\right\}\)
+ \(\sqrt{x}-2=1\) \(\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\) (thỏa mãn )
+ \(\sqrt{x}-2=5\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\) ( thỏa mãn)
vậy \(x\in\left\{9;49\right\}\) thì \(B\in Z\)
A= căn x-3+4/ căn x-3
A=1+4 / căn x-3
để A thuộc Z thì 4 chia hết cho x-3
hay x-3 là ước của 4
x-3 thuộc (1;-1;2;-2;4;-4)
x thuộc (4;2;5;1;7;-1)
vậy ....
Ta có :
Để M Có giá trị Nguyên
=> \(\frac{\left(\sqrt{x}-1\right)}{2}\) Nguyên
=> \(\sqrt{x}-1\) Nguyên
=> \(\sqrt{x}\) nguyên
mà x < 50
=> x = 1 ; 4 ; 9 ; 16 ; 25 ; 36 ; 49
mà \(\sqrt{x}-1\) là số nguyên
=> x = 1 ; 9 ; 25 ; 49
ĐK: \(x\ge-1;x\ne3\)
\(B^2=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\)
Để \(B^2\) có giá trị nguyên dương thì \(\frac{4}{x-3}\) có giá trị nguyên dương.Tức là x - 3 > 0
Và \(x-3\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Suy ra \(x\in\left\{4;5;7\right\}\).Để B có giá trị nguyên dương thì \(B^2\) là số chính phương.
Với x = 4: \(B^2=1+\frac{4}{x-3}=1+4=5\) (loại)
Với x = 5: \(B^2=1+\frac{4}{x-3}=1+2=3\)(loại)
Với x = 7: \(B^2=1+\frac{4}{x-3}=1+1=2\)(loại)
Vậy không có giá trị nào của x thuộc Z đề B có giá trị nguyên dương.
Để A thuộc Z
=> A^2 thuộc Z
=> x-3+4/x-3 = 1+4/x-3 thuộc z
=> x-3 thuộc ước của 4 Giải ra
Để \(M=\frac{\sqrt{x}-1}{2}\) đạt GT nguyên thì \(\sqrt{x}-1⋮2\) hay \(\sqrt{x}-1=2k\left(k\in Z\right)\)
\(\Rightarrow\sqrt{x}=2k+1\Rightarrow x=\left(2k+1\right)^2\) nên x là bình phương của 1 số
\(\Rightarrow x=\left\{1;9;25;49;81;....\right\}\)
Mà \(x< 50\Rightarrow x=\left\{1;9;25;49\right\}\)
\(M=\frac{\sqrt{x}-2}{\sqrt{x}+1}\) \(ĐKXĐ:x\ne1\)
\(M=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}\)
\(M=1-\frac{3}{\sqrt{x}+1}\)
để \(x\in Z\)thì \(M\in Z\)
mà \(1\in Z\) nên \(\frac{3}{\sqrt{x}+1}\in Z\)
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{\pm1;\pm3\right\}\)
+ \(\sqrt{x}+1=-1\)
\(\Leftrightarrow\sqrt{x}=-2\Leftrightarrow x\in\varnothing\)
+ \(\sqrt{x}+1=3\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\) ( thỏa mãn )
+ \(\sqrt{x}+1=-3\)
\(\Leftrightarrow\sqrt{x}=-4\Leftrightarrow x\in\varnothing\)
vậy \(x=4\)