\(M=\frac{1}{1\times2}+\frac{1}{3\times4}+...+\frac{1}{37\times38}\)

và 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

Dễ mà bạn.

1 tháng 6 2018

b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)

\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)

\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)

\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)

Từ (1);(2)\(\Rightarrow0< D< 1\)

\(\Rightarrowđpcm\)

20 tháng 7 2020

a,\(C>0\)

\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)

\(\Rightarrow0< A< 1\)

\(\Rightarrow A\notinℤ\)

c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

Ta quy đồng 3 số đầu

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)

\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)

\(1< E< 2\)

\(E\notinℤ\)

9 tháng 3 2020

\(B=\frac{1}{1.2}=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(B=\left(1-\frac{1}{2018}\right)-\left(\frac{1}{2}-\frac{1}{2}\right)-...-\left(\frac{1}{2017}-\frac{1}{2017}\right)\)

\(B=1-\frac{1}{2018}=\frac{2017}{2018}\)

Vậy \(B=\frac{2017}{2018}\)

5 tháng 9 2015

A=1/1.2+1/12+...+1/99.100

A=7/12+...1/99.100

Suy ra A>7/12 (1)

A=1-1/2+1/3-1/4+...+1/99-1/100

A=(1/2+1/3)-(1/4-...+1/100)

A=5/6-(1/4-...+1/100)

suy ra A<5/6 (2)

Vậy 7/12<A<5/6

chắc chắn đúng

5 tháng 9 2015

Lê Tùng lâm bài của bạn chưa đúng vì

A = \(\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)

Chứ không phải là: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{98.99}+\frac{1}{99.100}\)

2 tháng 1 2019

B= (1/2-1/3) + (1/3-1/4) + (1/4-1/5)+...+( 1/99-1/100)

B = (1/2-1/3) + (1/3 - 1/4) + (1/4 - 1/5)+...+ (1/99 + 1/100)

B= 1/2 +1/100=51/100

k mk nhóe

sai thì chỉ mk nhoa

2 tháng 1 2019

a)A=1/51+1/52+...+1/100

=>A>1/100+1/100+...+1/100

=>A>50/100(vì có 50 số hạng)

=> A>1/2

b)Ta có:

B=1/2.3+1/3.4+...+1/99.100

=> B=1/2-1/3+1/3-1/4+...+1/99-1/100

=> B=1/2-1/100

Mà 1/100>0

=> B<1/2

=> B<1/2<A

=>B<A

8 tháng 10 2016

Ta có: \(M=\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{37.38}\)

        \(\Rightarrow M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{37}-\frac{1}{38}\)

        \(\Rightarrow M=1-\frac{1}{38}=\frac{37}{38}\)

Tương tự:

=> M/N = ..

16 tháng 4 2017

Ta có: \(M=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{37.38}\)

          \(\Rightarrow M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{37}-\frac{1}{38}\)

          \(\Rightarrow M=1-\frac{1}{38}=\frac{37}{38}\)

Câu tiếp bạn làm tương tự nhé

Và r \(\frac{M}{N}=\)...