Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ ta có :\(mx^2-2x+m^2=0\)
\(\Delta=b^2-4ac=4-4m^3\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(4-4m^3\ge0\)
\(4\ge4m^3\)
\(1\ge m^3\)
\(1\ge m\)
Theo Vi-ét ta có \(\hept{\begin{cases}xA+xB=\frac{-b}{a}=\frac{2}{m}\\xAxB=\frac{c}{a}=m\end{cases}}\)
Vì m >0 nên \(xAxB>0\)
Vậy phương trình có hai nghiệm cùng dấu nên A B nằm cùng 1 phía trục tung
Ta có :\(\frac{2}{xA+xB}+\frac{1}{4xAxB+1}\)
\(\frac{2}{\frac{2}{m}}\)\(+\frac{1}{4m+1}\)= \(m+\frac{1}{4m+1}=\frac{m\left(4m+1\right)}{4m+1}+\frac{1}{4m+1}\)=\(\frac{4m^2+m+1}{4m+1}=P\)
\(4m^2+m+1=P\left(4m+1\right)\)
\(4m^2+m+1=4mP+P\)
\(4m^2+m+1-4mP-P=0\)
\(4m^2+m-4mP+1-P=0\)
\(4m^2+m\left(1-4P\right)+1-P=0\)
\(\Delta=b^2-4ac=\left(1-4P\right)^2-16\left(1-P\right)\)
\(=1-8P+16P^2-16+16P\)
\(=-15+8P+16P^2\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(16P^2+8P-15\ge0\)
\(\orbr{\begin{cases}P\le\frac{-5}{4}\\P\ge\frac{3}{4}\end{cases}}\)
Vậy minP =\(\frac{3}{4}\)
Dấu = xảy ra \(< =>\)\(\frac{4m^2+m+1}{4m+1}=P\)
\(\frac{4m^2+m+1}{4m+1}=\frac{3}{4}\)
\(4\left(4m^2+m+1\right)=3\left(4m+1\right)\)
\(16m^2+4m+4-12m-3=0\)
\(16m^2-8m+1=0\)
\(m=\frac{1}{4}\)
Vậy minP=\(\frac{3}{4}\)khi và chỉ khi \(m=\frac{1}{4}\)
ax^2=2x-a^2 phải có 2 nghiệm
\(\Leftrightarrow x^2-\frac{2}{a}+\frac{1}{a^2}=\frac{1}{a^2}-a^2\)
để có hai nghiệm VP>0
=> a<1
KL a là tham số dưong nhỏ hơn 1
Ta sẽ biểu diễn lại (d)
Có (d) 2x + y - a2 = 0
=> (d) y = -2x + a2
1, Hoành độ giao điểm của (d) và (P) là nghiệm của pt
\(-2x+a^2=ax^2\)
\(\Leftrightarrow ax^2+2x-a^2=0\)(1)
Ta có: \(\Delta'=1+a^3>0\forall a>0\)
Nên pt (1) có 2 nghiệm phân biệt
=> (d) cắt (P) tại 2 điểm phân biệt A và B
Có \(S=-\frac{2}{a}< 0\forall a>0\)
\(P=-a< 0\forall a>0\)
=> A và B nằm bên trái trục tung
2, Theo Vi-et \(x_A+x_B=-\frac{2}{a}\)
\(x_A.x_B=-a\)
Khi đó: \(T=\frac{4}{x_A+x_B}+\frac{1}{x_A.x_B}\)
\(=\frac{4}{\frac{-2}{a}}+\frac{1}{-a}\)
\(=-2a-\frac{1}{a}\)
\(=-\left(2a+\frac{1}{a}\right)\)
Áp dụng bđt Cô-si cho 2 số dương ta được
\(T=-\left(2a+\frac{1}{a}\right)\le-2\sqrt{2a.\frac{1}{a}}=-2\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow2a^2=1\)
\(\Leftrightarrow a^2=\frac{1}{2}\)
\(\Leftrightarrow a=\frac{1}{\sqrt{2}}\left(a>0\right)\)
Vậy ...........