K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Ta sẽ biểu diễn lại (d)

Có (d) 2x + y - a2 = 0

=> (d) y = -2x + a2 

1, Hoành độ giao điểm của (d) và (P) là nghiệm của pt

\(-2x+a^2=ax^2\)

\(\Leftrightarrow ax^2+2x-a^2=0\)(1)

Ta có: \(\Delta'=1+a^3>0\forall a>0\)

Nên pt (1) có 2 nghiệm phân biệt

=> (d) cắt (P) tại 2 điểm phân biệt A và B

Có \(S=-\frac{2}{a}< 0\forall a>0\)

   \(P=-a< 0\forall a>0\)

=> A và B nằm bên trái trục tung

2, Theo Vi-et \(x_A+x_B=-\frac{2}{a}\)

                    \(x_A.x_B=-a\)

Khi đó: \(T=\frac{4}{x_A+x_B}+\frac{1}{x_A.x_B}\)

                 \(=\frac{4}{\frac{-2}{a}}+\frac{1}{-a}\)

                \(=-2a-\frac{1}{a}\)

                 \(=-\left(2a+\frac{1}{a}\right)\)

Áp dụng bđt Cô-si cho 2 số dương ta được

\(T=-\left(2a+\frac{1}{a}\right)\le-2\sqrt{2a.\frac{1}{a}}=-2\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow2a^2=1\)

                       \(\Leftrightarrow a^2=\frac{1}{2}\)

                       \(\Leftrightarrow a=\frac{1}{\sqrt{2}}\left(a>0\right)\)

Vậy ...........

4 tháng 8 2019

Đáp án A

17 tháng 5 2021

đơn giản vl

Xét phương trình hoành độ ta có :\(mx^2-2x+m^2=0\)

\(\Delta=b^2-4ac=4-4m^3\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(4-4m^3\ge0\)

\(4\ge4m^3\)

\(1\ge m^3\)

\(1\ge m\)

Theo Vi-ét ta có \(\hept{\begin{cases}xA+xB=\frac{-b}{a}=\frac{2}{m}\\xAxB=\frac{c}{a}=m\end{cases}}\)

Vì m >0 nên \(xAxB>0\)

Vậy phương trình có hai nghiệm cùng dấu nên A B nằm cùng 1 phía trục tung

Ta có :\(\frac{2}{xA+xB}+\frac{1}{4xAxB+1}\)

\(\frac{2}{\frac{2}{m}}\)\(+\frac{1}{4m+1}\)\(m+\frac{1}{4m+1}=\frac{m\left(4m+1\right)}{4m+1}+\frac{1}{4m+1}\)=\(\frac{4m^2+m+1}{4m+1}=P\)

\(4m^2+m+1=P\left(4m+1\right)\)

\(4m^2+m+1=4mP+P\)

\(4m^2+m+1-4mP-P=0\)

\(4m^2+m-4mP+1-P=0\)

\(4m^2+m\left(1-4P\right)+1-P=0\)

\(\Delta=b^2-4ac=\left(1-4P\right)^2-16\left(1-P\right)\)

\(=1-8P+16P^2-16+16P\)

\(=-15+8P+16P^2\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(16P^2+8P-15\ge0\)

\(\orbr{\begin{cases}P\le\frac{-5}{4}\\P\ge\frac{3}{4}\end{cases}}\)

Vậy minP =\(\frac{3}{4}\)

Dấu = xảy ra \(< =>\)\(\frac{4m^2+m+1}{4m+1}=P\)

\(\frac{4m^2+m+1}{4m+1}=\frac{3}{4}\)

\(4\left(4m^2+m+1\right)=3\left(4m+1\right)\)

\(16m^2+4m+4-12m-3=0\)

\(16m^2-8m+1=0\)

\(m=\frac{1}{4}\)

Vậy minP=\(\frac{3}{4}\)khi và chỉ khi \(m=\frac{1}{4}\)

16 tháng 1 2017

ax^2=2x-a^2 phải có 2 nghiệm

\(\Leftrightarrow x^2-\frac{2}{a}+\frac{1}{a^2}=\frac{1}{a^2}-a^2\) 

để có hai nghiệm VP>0

=> a<1

KL a là tham số dưong nhỏ hơn 1

16 tháng 1 2017

Mới nghĩ ra: 
KL: 0 < a < 1