K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

Chọn A

11 tháng 5 2018

Chọn A

NV
18 tháng 8 2021

\(\widehat{MON}=180^0-\widehat{MAN}=120^0\)

\(S=4\pi R^2=36\pi\Rightarrow R=3\Rightarrow OM=ON=3\)

Áp dụng định lý hàm cos cho tam giác MON:

\(MN=\sqrt{OM^2+ON^2-2OM.ON.cos\widehat{MON}}=\sqrt{3^2+3^2-2.3.3.cos120^0}=3\sqrt{3}\)

16 tháng 3 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt phẳng (ABO) qua tâm O của hình cầu nên cắt mặt cầu theo đường tròn lớn qua A và B. Gọi I là trung điểm của đoạn AB ta có OI ⊥ AB. Vì AB // OH nên AIOH là hình chữ nhật.

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy AB = 2AI = r

Chú ý: Có thể nhận xét rằng tam giác OAB cân tại O (OA = OB) và có góc ∠ OAB = 60 °  nên OAB là tam giác đều và suy ra AB = OA = OB = r.

28 tháng 2 2019

30 tháng 12 2019

Chọn A

Điểm M(1;0;0) là 1 điểm thuộc (P)

 (P) // (Q) nên 

Giả sử I(a;b;c) là tâm của (S). Vì (S) tiếp xúc với cả (P) và (Q) nên bán kính mặt cầu (S) là:

Do đó IA = 2 nên I luôn thuộc mặt cầu (T) tâm A, bán kính 2.

Ngoài ra 

Do đó I luôn thuộc mặt phẳng (R): 2x-y-2z+4=0.

Gọi H là hình chiếu vuông góc của A lên (R). Vì A, (R) cố định nên H cố định.

Ta có

do đó tam giác AHI  vuông tại H nên

Vậy I luôn thuộc đường tròn tâm H, nằm trên mặt phẳng (R), bán kính 

19 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì mặt phẳng (P) qua A và vuông góc với Δ′ nên AA’ thuộc (P). Vì M thuộc  ∆  mà d là hình chiếu vuông góc của  ∆  trên (P) nên M 1 thuộc d. Vì MA ⊥ AA′ ⇒  M 1 A  ⊥  AA′

Mặt khác  M 1 A  ⊥  M′A′ nên ta suy ra  M 1 A  ⊥  (AA′M′). Do đó  M 1 A  ⊥  M′A và điểm A thuộc mặt cầu đường kính M’ M 1

Ta có M′A′  ⊥  (P) nên M′A′  ⊥  A′ M 1 , ta suy ra điểm A’ cũng thuộc mặt cầu đường kính M’ M 1

Ta có (Q) // (P) nên ta suy ra

M M 1  ⊥ (Q) mà MM’ thuộc (Q), do đó  M 1 M  ⊥  MM′

Như vậy 5 điểm A, A’, M, M’,  M 1  cùng thuộc mặt cầu (S) có đường kính M’ M 1 . Tâm O của mặt cầu (S) là trung điểm của đoạn M’ M 1

Ta có M ' M 1 2 = M ' A ' 2 + A ' M 1 2  = M ' A ' 2 + A ' A 2 + AM 1 2 = x 2 + a 2 + x 2 cot 2 α vì M M 1  = x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bán kính r của mặt cầu (S) bằng (M′ M 1 )/2 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

4 tháng 1 2019

Đáp án đúng : B

1 tháng 2 2017

Đáp án A

Phương pháp giải:

Xét vị trí tương đối của mặt phẳng, gọi phương trình tổng quát của mặt phẳng và tính toán dựa vào điều kiện tiếp xúc

Lời giải:

Gọi phương trình mặt phẳng cần tìm là (P): ax+by+cz+d=0

suy ra mp(P)//BC hoặc đi qua trung điểm của BC.

Mà  B C   → = ( - 4 ; 0 ; 0 )  và mp  vuông góc với mp (Oyz) => (P) //BC

Với  (P) //BC => a = 0 => by+cz+d=0

suy ra có ba mặt phẳng thỏa mãn