K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2020

M=(3+3^2)+(3^3+3^4)+....+(3^99+3^100)

M=3(1+3)+3^3(1+3)+....+3^99(1+3)

M=3.4+3^3.4+....+3^99.4

M=4(3+3^3+....+3^99)

SUY RA M CHI HẾT CHO 4

NHỚ TÍCH MK NHA

31 tháng 1 2020

M=3+32+33+34+...+3100

3M=3(3+32+33+34+...+3100)

3M=32+33+34+35+...+3101

3M-M=2M=32+33+34+35+...+3101-(3+32+33+34+...+3100)

2M=32+33+34+35+...+3101-3-32-33-34-...-3100

2M=3101-3

M=\(\frac{3^{101}-3}{2}\)

31 tháng 1 2020

=) ta có : M=3+3^2+3^3+3^4+...+3^100

            =)M = 3+32+33+3+ 3x ( 3+32+33+34  ) + ....+ 395 x (  3+32+33+34 )

           =) M = 120 + 35 x 120 + .... + 395 x 120

vì mỗi SSH đều chia hết cho 12 =) M cũng chia hết cho 3

 vậy M chia hết cho 12 và 3

31 tháng 10 2021

A = 3 + 32 + 33 + 34 + ... 3100

A = 31 + 32 + 33 + 34 + ...... 3100

A = ( 3100 - 31 ) : 11

A = 398 - ( 32 + 34 )

A = 392

A không chia hết cho 12 vì 12 là thừa số nguyên tố chẵn 

31 tháng 10 2021

+) \(A=3+3^2+3^3+3^4+...+3^{100}\)

\(A=3\left(1+3\right)+3^3\left(1+3\right)+....+3^{99}\left(1+3\right)\)

\(\Rightarrow A⋮4\)

+) \(A=3+3^2+3^3+3^4+...+3^{100}\)

\(A=3\left(1+3+3^2\right)+.....\)( tương tự nhóm liên tiếp 3 số )

\(A=3.13+......⋮13\)

\(\Rightarrow A⋮̸12\)

7 tháng 5 2016

1. Ta có:

3A = 3^2 + 3^3+3^4+...+3^101

=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)

<=> 2A= 3^101-3

=> 2A +3 = 3^101

Mà 2A+3=3^n

=> 3^101 = 3^n => n=101

7 tháng 5 2016

2. M=3+32+33+34+...+3100

=>3M=32+33+34+35+...+3101

=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé) 

=>   M=\(\frac{3^{101}-3}{2}\)

a) Ta co : 3101=(34)25 .3=8125.3

Bạn học đồng dư thức rồi thì xem:

  Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)

=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8

=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)

Ma M=3101-3 chia hết cho 3                              (2)

Từ (1) và (2) => M chia hết cho 12

b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)

=> 3101-3 +3 =3n

=> 3101=3n=> n = 101

     

                                   

1 tháng 4 2022

3/4 +3 =

14 tháng 10 2018

a, \(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{99}+3^{100}\right)\)

\(=\left[3\left(1+3\right)\right]+\left[3^3\left(1+3\right)\right]+...+\left[3^{99}\left(1+3\right)\right]\)

\(=3\cdot4+3^3\cdot4+....+3^{99}\cdot4\)

\(=4\left(3+3^3+...+3^{99}\right)\)

\(\Rightarrow B⋮4\)

b, Vì 3 chia hết cho 3

3chia hết cho 3

.

.

.

3100 chia hết cho 3

\(\Rightarrow B⋮3\)

c,\(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+2^4\right)+....+\left(3^{99}+3^{100}\right)\)

\(=12+\left[3^2\left(3+3^2\right)\right]+....+\left[3^{97}\left(3+3^2\right)\right]\)

\(=12+3^2\cdot12+....+3^{97}\cdot12\)

\(=12\left(1+3^2+...+3^{97}\right)\)

\(\Rightarrow B⋮12\)

7 tháng 2 2018

yes or no

19 tháng 2 2019

ko chia hết.Vì 1+2+3+.......+13 \(⋮\) 1+2+....+13 mà 14 ko\(⋮\) cho 1+2+.......+13

3 tháng 1 2019

\(M=3+3^2+3^3+...+3^{100}\)

\(M=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(M=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(M=4.\left(3+3^3+...+3^{99}\right)\)

\(\Rightarrow M⋮4\)

mà \(M⋮3\)

\(\Rightarrow M⋮12\)

3 tháng 1 2019

Đáp án M có chia hết cho 4 và M có chia cho 12

a) ta có m = 3 + 32+ 33+...+3100

              3M=3^2+3^3+3^4+....+3^101

               2M=3^101-3

             =>2M+3=3^101

                  2M+6=3^101+3

                   M+3=(3^101+3)/2

Tớ nghĩ có lẽ bạn chép sai đề

11 tháng 9 2015

Sao lại có 2 số 25 vậy?