K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

a) M là phân số khi \(3-a\ne0\Rightarrow a\ne3\)

b) Mlà số nguyên khi 2a+1 chia hết ch 3-a mà 2a+1 chia 3-a dư 7 nên muốn 2a+1 chia hết cho 7 thì 3-a phải là ước của 7.

Ta có ước của 7 là s=(-1;1;-7;7)

Ta xét các trường hợp:

trường hợp 1: \(-a+3=-1\Rightarrow-a=-4\Rightarrow a=4;\)

trường hợp 2: \(-a+3=1\Rightarrow-a=-2\Rightarrow a=2;\)

trường hợp 3: \(-a+3=-7\Rightarrow-a=-10\Rightarrow a=10;\)

trường hợp 4: \(-a+3=7\Rightarrow-a=4\Rightarrow a=-4;\)

vậy với a=(-4;2;4;10) thì M là 1 số nguyên.

26 tháng 4 2017

                                                                         Giải                                                                                                                    \(A=\frac{a^3+2a^2-1}{a^3+2a^22a+1}\)                                                                                                                                                           \(A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)                                                                                                      \(A=\frac{a^2\left(a+1\right)\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)                                                                                                                         \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2 +a+1\right)}\)                                                                                                                                             \(A=\frac{a^2+a-1}{a^2+a+1}\)                                                                                                                                                                  b, Gọi d là ƯCLN \(\left(a^2+a-1;a^2+a+1\right)\)                                                                                                                   \(\Rightarrow\)\(a^2+a-1⋮d\)                                                                                                                                                                     \(a^2+a+1⋮d\)                                                                                                                                                               \(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\)                                                                                                                            \(\Rightarrow2⋮d\)                                                                                                                                                                                     \(\Rightarrow d=1\) hoặc d=2                                                                                                                                                              Nhận xét : \(a^2+a-1=a\left(a+1\right)-1\)                                                                                                                         Với số nguyên a ta có :a(a+1) là tích 2 số nguyên liên tiếp \(\Rightarrow a\left(a+1\right)⋮2\)                                                                                \(\Rightarrow a\left(a+1\right)-1\) lẻ \(\Rightarrow a^2+a-1\) lẻ                                                                                                                        \(\Rightarrow\) d không thể bằng 2                                                                                                                                                           Vậy d=1 (đpcm)

28 tháng 6 2016

a. \(A=\frac{a^3+a^2+a^2-1}{ \left(a^3+1\right)+\left(2a^2+2a\right)}\)

\(A=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2+a+1\right)+2a\left(a+1\right)}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1+2a\right)}\)

\(A=\frac{a^2+a-1}{a^2+3a+1}\)

14 tháng 8 2019

1) a) Để x > 0

=> \(2a-5< 0\)

\(\Rightarrow2a< 5\)

\(\Rightarrow a< 2,5\)

\(\text{Vậy }x>0\Leftrightarrow a< 2,5\)

b) Để x < 0

\(\Rightarrow2a-5>0\)

\(\Rightarrow2a>5\)

\(\Rightarrow a>2,5\)

\(\text{Vậy }x< 0\Leftrightarrow a>2,5\)

c) Để x = 0

\(\Rightarrow2a-5=0\)

\(\Rightarrow2a=5\)

\(\Rightarrow a=2,5\)

\(\text{Vậy }x=0\Leftrightarrow a=2,5\)

2) \(\text{Vì }a\inℤ\Rightarrow3a-5\inℤ\)

\(\text{mà }x\inℤ\Leftrightarrow3a-5⋮4\)

\(\Rightarrow3a-5\in B\left(4\right)\)

\(\Rightarrow3a-5\in\left\{0;4;8;...\right\}\)

\(\Rightarrow3a\in\left\{5;9;13;....\right\}\)

\(\Rightarrow a\in\left\{\frac{5}{3};3;\frac{13}{3};6;....\right\}\)

\(\text{Mà }a\inℤ\Rightarrow a\in\left\{3;6;9;...\right\}\text{thì }x\inℤ\)

10 tháng 5 2017

a/ \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left[a+1\right]\left[a^2+a-1\right]}{\left[a+1\right]\left[a^2+a+1\right]}=\frac{a^2+a-1}{a^2+a+1}\)

 b.Gọi d là ước chung lớn nhất của a2 + a – 1 và a2+a +1.

Vì a2 + a – 1 = a(a+1) – 1 là số lẻ nên d là số lẻ

Mặt khác, 2 = [ a2+a +1 – (a2 + a – 1) ] d

Nên d = 1 tức là a2 + a + 1 và a2 + a – 1 nguyên tố cùng nhau.

 Vậy biểu thức A là phân số tối giản.

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.