Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do AMC và BMD là các tam giác đều nên \(\widehat{AMC}=\widehat{BMD}=60^o\)
\(\Rightarrow\widehat{AMD}=\widehat{CMB}\)
Xét tam giác AMD và tam giác CMB có:
AM = CM
MD = MB
\(\widehat{AMD}=\widehat{CMB}\)
\(\Rightarrow\Delta AMD=\Delta CMB\left(c-g-c\right)\)
\(\Rightarrow AD=BC\)
b) Do \(\Delta AMD=\Delta CMB\Rightarrow\widehat{EAM}=\widehat{FCM}\)
Xét tam giác AEM và tam giác CFM có:
\(\widehat{EAM}=\widehat{FCM}\)
AE = CF (Cùng bằng một nửa AD)
AM = CM
\(\Rightarrow\Delta AEM=\Delta CFM\left(c-g-c\right)\)
\(\Rightarrow ME=MF\)
Ta cũng có ngay \(\Delta EDM=\Delta FBM\left(c-g-c\right)\)
\(\Rightarrow\widehat{EMD}=\widehat{FMB}\)
\(\Rightarrow\widehat{EMF}=\widehat{EMD}+\widehat{DMF}=\widehat{FMB}+\widehat{DMF}=\widehat{DMB}=60^o\)
Xét tam giác MEF có ME = MF nên nó là tam giác cân. Lại có \(\widehat{EMF}=60^o\) nên tam giác MEF là tam giác đều.
a) Dễ thấy: ^CMD = 1800 - (^AMC + ^BMD) = 600
Ta có: ^CMB = ^CMD + ^BMD = 1200; ^AMD = ^CMD + ^AMC = 1200
=> ^CMB = ^AMD.
Xét \(\Delta\)MCB và \(\Delta\)MAD có: MC=MA; ^CMB = ^AMD; MB=MD => \(\Delta\)MCB = \(\Delta\)MAD (c.g.c)
=> BC = AD (2 cạnh tương ứng) (đpcm).
b) BC=AD (cmt) => 1/2.BC=1/2.AD => CF=AE
\(\Delta\)MCB = \(\Delta\)MAD (cmt) => ^MCB = ^MAD hay ^MCF = ^MAE
Xét \(\Delta\)MFC và \(\Delta\)MEA có: CF=AE; ^MCF= ^MAE; MC=MA => \(\Delta\)MFC = \(\Delta\)MEA (c.g.c)
=> MF = ME (2 cạnh tương ứng) (1)
Đồng thời ^CMF = ^AME (2 góc tương ứng). Mà ^AME + ^CME = 600
=> ^CMF + ^CME = 600 => ^EMF = 600 (2)
Tù (1) và (2) => \(\Delta\)MEF đều (đpcm).
Em tham khảo tại đây nhé.
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Do ∆ACM và ∆MDB đều => AC = AM = AC và MD = BD = MB. Nối M -> E; E -> F; F -> M
Xét ∆AMD và ∆CMB có:
+ AM = CM
+ góc AMD = góc CMB = 120º (kề bù với 2 góc 60º)
+ MD = MB
=> ∆AMD = ∆CMB(c.g.c) => AD = BC => AD/2 = BC/2 => AE = CF và góc DAM = góc BCM
Xét ∆AEM và ∆CFM có:
+ AE = CF
+ góc EAM = góc FCM
+ AM = CM
=> ∆AEM = ∆CFM(c.g.c) => EM = MF và góc AME = góc FMC
=> góc AME + góc EMC = góc FMC + góc EMC
=> góc MEF = góc AMC = 60º
Xét ∆EFM có EM = MF và góc MEF = 60º => ∆EFM là tam giác cân có 1 góc = 60º
=> ∆EFM là tam giác đều.
B2) Lấy D ∈ AE sao cho AD = AC => DE = AB và ∆DAC đều
Xét ∆ABC và ∆DEC có:
+ AB = DE
+ góc BAC = góc EDC = 120º (bạn tự chứng minh)
+ AD = DC
=> ∆ABC = ∆DEC(c.g.c) => BC = EC và góc ACB = góc DCE
=> góc ACB + góc BCD = góc DCE + góc BCD
=> góc ECB = góc ACD = 60º
Xét ∆BEC có BC = EC và góc ECB = 60º => ∆BEC là tam giác cân có 1 góc = 60º
=> ∆BEC là tam giác đều.
B3) Do ∆ABC vuông cân tại A, có trung tuyên AM => AM cũng là phân giác, trung tuyến, đường cao,...
=> BM = CM ;góc BAM = góc CAM = 45º => AM = MC(∆AMC vuông cân tại M)
Xét ∆HAB và ∆KCA có:
+ góc BHA = góc CKA = 90º
+ AB = AC
+ góc BAH = góc ACK (= 90º - góc CAK - bạn tự chứng minh)
=> ∆HAB = ∆KCA(g.c.g) => AH = CK
Ta có: góc HAB = góc ACK => góc HAB + góc BAM = góc ACK + góc MCA (do góc MAB = góc MCA = 45º) => góc MAH = góc MCK
Xét ∆HAM và ∆KCM có
+ AH = CK
+ góc MAH = góc MCK
+ AM = MC
=> ∆HAM = ∆KCM (c.g.c) => HM = MK(1) và góc HMA = góc CMK
=> góc HMA + góc AMK = góc CMK + góc AMK
=> góc HMK = góc AMC = 90º (2)
từ (1) và (2) => ∆HMK vuông cân tại M
Do ∆ACM và ∆MDB đều => AC = AM = AC và MD = BD = MB. Nối M -> E; E -> F; F -> M
Xét ∆AMD và ∆CMB có:
+ AM = CM
+ góc AMD = góc CMB = 120º (kề bù với 2 góc 60º)
+ MD = MB
=> ∆AMD = ∆CMB(c.g.c) => AD = BC => AD/2 = BC/2 => AE = CF và góc DAM = góc BCM
Xét ∆AEM và ∆CFM có:
+ AE = CF
+ góc EAM = góc FCM
+ AM = CM
=> ∆AEM = ∆CFM(c.g.c) => EM = MF và góc AME = góc FMC
=> góc AME + góc EMC = góc FMC + góc EMC
=> góc MEF = góc AMC = 60º
Xét ∆EFM có EM = MF và góc MEF = 60º => ∆EFM là tam giác cân có 1 góc = 60º
=> ∆EFM là tam giác đều.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Phạm Thị Thu Trang - Toán lớp 7 - Học toán với OnlineMath
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi
đều gi?
Em tham khảo tại đây nhé:
Câu hỏi của Phạm Thị Thu Trang - Toán lớp 7 - Học toán với OnlineMath