Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: m<n
<=> 2m<2n (nhân cả hai vế với 2)
<=> 2m+1<2n+1 (cộng cả hai vế với 1) \(\xrightarrow[]{}\) đpcm
b. Ta có: m<n
<=> m-2<n-2 (cộng cả hai vế với -2)
<=> 4(m-2)<4(n-2) (nhân cả hai vế với 4) \(\xrightarrow[]{}\) đpcm
c. Ta có: m<n
<=> -6m>-6n (nhân cả hai vế với -6)
<=> 3-6m>3-6n (cộng cả hai vế với 3) \(\xrightarrow[]{}\) đpcm
d. Ta có: m<n
<=> 4m<4n (nhân cả hai vế với 4)
<=> 4m+1<4n+1 (cộng cả hai vế với 1)
mà 4n+1<4n+5
=> 4m+1<4n+5 \(\xrightarrow[]{}đpcm\)
a, Ta có: \(m< n\Leftrightarrow4m< 4n\) (nhân cả hai vế với 4)
\(\Leftrightarrow4m+1< 4n+1\) (cộng cả hai vế với 1)
mà 1<5 \(\Leftrightarrow4n+1< 4n+5\)
\(\Rightarrow4m+1< 4n+5\)
b. Ta có: \(m< n\Leftrightarrow-5m>-5n\) (nhân cả hai vế với -5)
\(\Leftrightarrow3-5m>3-5n\) (cộng cả hai vế với 3)
mà 1<3 \(\Leftrightarrow1-5n< 3-5n\)
\(\Rightarrow3-5m>1-5n\)
a) -8m + 2
Vì m>n mà số nguyên âm nào có trị tuyệt đối lớn hơn thì bé hơn nên suy ra ta có:
-8m + 2 < - 8n + 2
b) 6n - 1 với 6m + 2
6n - 1 < 6m + 2
\(\left(4m-1\right)\left(n-4\right)-\left(m-4\right)\left(4n-1\right)\)= 4mn-16m-n+4-4mn+m+16n=15n-15m=15(n-m)
Thấy 15 chia hết cho 5 => 15(m+n) chia hết cho 5 với mọi x
Lời giải:
Ta có:
\(3m^2+m=4n^2+n\)
\(\Leftrightarrow 4m^2+m=4n^2+n+m^2\)
\(\Leftrightarrow 4(m^2-n^2)+(m-n)=m^2\)
\(\Leftrightarrow (m-n)(4m+4n+1)=m^2\)
Đặt $d$ là ước chung lớn nhất của $m-n$ và $4m+4n+1$
\(\Rightarrow \left\{\begin{matrix} m-n\vdots d\\ 4m+4n+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m^2=(m-n)(4m+4n+1)\vdots d^2\\ 4(m-n)+(4m+4n+1)\vdots d\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\vdots d\\ 8m+1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=1\)
Vậy $m-n, 4m+4n+1$ nguyên tố cùng nhau. Mà tích của chúng là 1 số chính phương nên bản thân $m-n, 4m+4n+1$ cũng là các số chính phương (đpcm).
Lời giải:
Ta có:
\(3m^2+m=4n^2+n\)
\(\Leftrightarrow 4m^2+m=4n^2+n+m^2\)
\(\Leftrightarrow 4(m^2-n^2)+(m-n)=m^2\)
\(\Leftrightarrow (m-n)(4m+4n+1)=m^2\)
Đặt $d$ là ước chung lớn nhất của $m-n$ và $4m+4n+1$
\(\Rightarrow \left\{\begin{matrix} m-n\vdots d\\ 4m+4n+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m^2=(m-n)(4m+4n+1)\vdots d^2\\ 4(m-n)+(4m+4n+1)\vdots d\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\vdots d\\ 8m+1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=1\)
Vậy $m-n, 4m+4n+1$ nguyên tố cùng nhau. Mà tích của chúng là 1 số chính phương nên bản thân $m-n, 4m+4n+1$ cũng là các số chính phương (đpcm).
Ta có: m < n ⇒ 4m < 4n ⇒ 4m + 1 < 4n + 1 (1)
1 < 5 ⇒ 4n + 1 < 4n + 5 (2)
Từ (1) và (2) suy ra: 4m + 1 < 4n + 5