K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

Ta có:

m > n

\(\Rightarrow\) 5m > 5n

mà 1 > -4

\(\Rightarrow\) 5m + 1 > 5n - 4

Chúc bạn học tốt!!! ngoc do

5 tháng 5 2018

cảm ơn nhìu nh!

22 tháng 10 2017

HS tự chứng minh

AH
Akai Haruma
Giáo viên
19 tháng 11 2019

Lời giải:

Ta có:

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow 5m^2+m=5n^2+n+m^2\)

\(\Leftrightarrow 5(m^2-n^2)+(m-n)=m^2\)

\(\Leftrightarrow (m-n)(5m+5n+1)=m^2\)

Đặt $d$ là ước chung lớn nhất của $m-n$ và $5m+5n+1$

\(\Rightarrow \left\{\begin{matrix} m-n\vdots d\\ 5m+5n+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m^2=(m-n)(5m+5n+1)\vdots d^2\\ 5(m-n)+(5m+5n+1)\vdots d\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\vdots d\\ 10m+1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=1\)

Vậy $m-n, 5m+5n+1$ nguyên tố cùng nhau. Mà tích của chúng là 1 số chính phương nên bản thân $m-n, 5m+5n+1$ cũng là các số chính phương (đpcm).

3 tháng 4 2016

Để giải được bài toán sau thì ta liên tưởng đến một tính chất rất đặc biệt và hữu ích được phát biểu như sau:

\("\) Nếu  \(a,b\)  là hai số tự nhiên nguyên tố cùng nhau và  \(a.b\)  là một số chính phương thì \(a\)  và  \(b\) đều là các số chính phương  \("\)

Ta có:

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow\)  \(4m^2+m-5n^2-n=0\)

\(\Leftrightarrow\)  \(5m^2-5n^2+m-n=m^2\)

\(\Leftrightarrow\)  \(5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\)  \(\left(m-n\right)\left(5m+5n+1\right)=m^2\)  \(\left(\text{*}\right)\)

Gọi  \(d\)  là ước chung lớn nhất của  \(m-n\)  và   \(5m+5n+1\)  \(\left(\text{**}\right)\), khi đó:

\(m-n\)  chia hết cho  \(d\)   \(\Rightarrow\)  \(5\left(m-n\right)\)  chia hết cho  \(d\)

\(5m+5n+1\)  chia hết cho  \(d\)

nên   \(\left[\left(5m+5n+1\right)+5\left(m-n\right)\right]\)  chia hết cho  \(d\)

\(\Leftrightarrow\)   \(10m+1\)  chia hết cho  \(d\)   \(\left(1\right)\)

Mặt khác, từ  \(\left(\text{*}\right)\), với chú ý cách gọi ở \(\left(\text{**}\right)\), ta suy ra được:  \(m^2\)  chia hết cho  \(d^2\)

Do đó,  \(m\)  chia hết cho  \(d\)

  \(\Rightarrow\)   \(10m\)  chia hết cho  \(d\)   \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\), ta có  \(1\)  chia hết cho  \(d\)  \(\Rightarrow\)  \(d=1\)

Do đó,  \(m-n\)  và  \(5m+5n+1\)  là các số tự nhiên nguyên tố cùng nhau  

Kết hợp với  \(\left(\text{*}\right)\)  và điều mới chứng minh trên, thỏa mãn tất cả các điều kiện cần thiết ở tính chất nêu trên nên ta có đpcm

Vậy,   \(m-n\)  và  \(5m+5n+1\)  đều là các số chính phương.

13 tháng 3 2018

Ta có: m < n ⇒ -5m > -5n ⇒ 1 – 5m > 1 – 5n (3)

3 > 1 ⇒ 3 – 5m > 1 – 5m (4)

Từ (3) và (4) suy ra: 3 – 5m > 1 – 5n

20 tháng 11 2019

Ta có : 

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow5m^2+m=5n^2+n+m^2\)

\(\Leftrightarrow5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\left(m-n\right)\left(5m+5n+1\right)=m^2\)

\(\Rightarrow\hept{\begin{cases}m-n⋮d\\5m+5n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}m^2=\left(m-n\right)\left(5m+5n+1\right)⋮d^2\\5\left(m-n\right)\left(5m+5n+1\right)⋮d\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}m⋮d\\10m+1⋮d\end{cases}\Rightarrow1⋮d\Rightarrow d=1}\)

Vậy \(m-n,5m+5n+1\) nguyên tố cùng nhau . Mà tích của chúng là một số chính phương nên bản thân \(m-n,5m+5n+1\) cũng là số chính phương ( đpcm)

Chúc bạn học tốt !!!

3 tháng 9 2021

4m2+m=5n2+n

{=}5m2+m=5n2+n+m2

{=}5(m2-n2)+(m-n)=m2

{=}(m-n)(5m+5n+1)=m2

3 tháng 9 2021

là sao

18 tháng 5 2020

a, Ta có m<n

⇔m+3 < n+3 (t/c)

b, Ta có m<n

⇔-3m>-3n(t/c)

c, Ta có m<n

⇔4m < 4n (t/c)

⇔4m-7 <4n-7 (t/c)

d, Ta có m<n

⇔-5m > -5n (t/c)

⇔-5m+10> -5n+10(t/c)

Hay 10-5m > 10-5n

chúc bạn học tốt !

23 tháng 4 2017

5m+2 và 5n+2 cùng thêm một lượng như nhau là 2 mà m>n nên 5m>5n \(\Rightarrow\)5m+2>5n+2

23 tháng 4 2017

5m+2>5n+2

=>(m*5)+2>(n*5)+2

=> m*5>n*5

mà m>n nên 5m chắc chắn lớn hơn 5n

26 tháng 10 2015

Mk muốn giúp bạn lắm nhưng mà chưa học đến, sory nha

26 tháng 10 2015

4m2+m=5m2+n suy ra m= 5m2+n-4m2= m2+n

ta có m-n

m2+n -n=m2 là một số chính phương